Python网络爬虫requests库怎么使用
1. 什么是网络爬虫
简单来说,就是构建一个程序,以自动化的方式从网络上下载、解析和组织数据。
就像我们浏览网页的时候,对于我们感兴趣的内容我们会复制粘贴到自己的笔记本中,方便下次阅读浏览——网络爬虫帮我们自动完成这些内容
当然如果遇到一些无法复制粘贴的网站——网络爬虫就更能显示它的力量了
为什么需要网络爬虫
当我们需要做一些数据分析的时候——而很多时候这些数据存储在网页中,手动下载需要花费的时间太长,这时候我们就需要网络爬虫帮助我们自动爬取这些数据来(当然我们会过滤掉网页上那些没用的东西)
网络爬虫的应用
访问和收集网络数据有十分广泛的应用,其中很多属于数据科学领域 我们来看看下面这些例子:
淘宝网的卖家需要从海量的评价中寻找到有用的正面的和反面的信息,来帮助他进一步抓住顾客的心,分析顾客的购物心理有学者在twitter、微博等社交媒体上爬取信息来构建一个数据集,从而建立一个识别抑郁症和自杀念头的预测模型——让更多需要援助的人得到帮助——当然我们也需要考虑到隐私相关的问题——但这很酷不是吗?
作为一名人工智能工程师,他们从Ins上爬取志愿者所展示的喜好的图片,来训练深度学习模型,从而预测给出的图像是否会被志愿者所喜好——手机制造商将这些模型纳入他们的图片应用程序中,推送给你。电商平台的数据科学家爬取用户浏览商品的信息,进行分析和预测,以便推送给用户他最想要了解和购买的商品
是的!网络爬虫的应用十分广泛,小到我们日常用来批量爬取一些高清的壁纸,图片;大到人工智能、深度学习、商业策略制定的数据来源等。
这个时代是数据的时代,数据就是“新石油”
2. 网络传输协议HTTP
没错,讲到网络爬虫一定绕不开的就是这个HTTP,当然我们不需要像网络工程师那样详细的了解协议定义的方方面面,但是作为入门我们还是得具有一定的认识才行
国际标准化组织ISO维护了开放式通信系统互联参考模型OSI,而该模型将计算机通信结构分为七层
物理层:包括以太网协议、USB协议、蓝牙协议等
数据链路层:包含以太网协议
网络层:包含IP协议
传输层:包含TCP、UDP协议
会话层:包含用于打开/关闭和管理会话的协议
表示层:包含保护格式还和翻译数据的协议
应用层:包含HTTP和DNS网络服务协议
现在来看看HTTP请求和响应是什么样子的(因为后面会涉及自定义请求头) 一般请求消息由一下内容构成:
请求行
多个请求头
空行
可选的消息主体
具体的请求消息:
GET https://www.baidu.com/?tn=80035161_1_dg HTTP/1.1 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: zh-Hans-CN,zh-Hans;q=0.8,en-GB;q=0.5,en;q=0.3 Upgrade-Insecure-Requests: 1 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.18362 Accept-Encoding: gzip, deflate, br Host: www.baidu.com Connection: Keep-Alive
这个是访问百度时的请求,当然里面的很多细节我们也不需要知道,因为python的request包会帮助我们完成我们的爬取
当然我们也能查看网页对我们的请求返回的信息:
HTTP/1.1 200 OK //这边的状态码为200表示我们的请求成功 Bdpagetype: 2 Cache-Control: private Connection: keep-alive Content-Encoding: gzip Content-Type: text/html;charset=utf-8 Date: Sun, 09 Aug 2020 02:57:00 GMT Expires: Sun, 09 Aug 2020 02:56:59 GMT X-Ua-Compatible: IE=Edge,chrome=1 Transfer-Encoding: chunked
3. requests库(不喜欢理论知识的同学们可以直接来这里哦)
我们知道其实python还预置了另外的处理HTTP的库——urllib和urllib3,但是requests库学起来更容易——代码更简洁易懂。 当然当我们成功爬取下网页时,将要将里面我们感兴趣的东西提取出来的时候, 我们会提到另一个十分有用的库——美丽汤(Beautiful Soup)——这又是后话了
1. requests库的安装
这里我们可以直接找到requests的.whl文件安装,也可以直接使用pip来安装(当然如果有pycharm的同学可以直接从里面的环境加载中下载)
2. 实战
下面我们开始正式爬取网页
代码如下:
import requests target = 'https://www.baidu.com/' get_url = requests.get(url=target) print(get_url.status_code) print(get_url.text)
输出结果
200 //返回状态码200表示请求成功 <!DOCTYPE html>//这里删除了很多内容,实际上输出的网页信息比这要多得多 <!--STATUS OK--><html> <head><meta http-equiv=content-type content=text/html; charset=utf-8><meta http-equiv=X-UA-Compatible content=IE=Edge> <meta content=always name=referrer> <link rel=stylesheet type=text/css src=//www.baidu.com/img/gs.gif> </p> </div> </div> </div> </body> </html>
上面五行代码做了很多事情,我们已经可以将网页的HTML内容全部抓取
第一行代码:加载requests库 第二行代码:给出需要爬取的网站 第三行代码:使用requests进行请求 一般的格式如下:
对象 = requests.get(url=你想要爬取的网站地址)
第四行代码:返回请求的状态码 第五行代码:输出相应的内容主体
当然我们还可以打印更多的内容
import requests target = 'https://www.baidu.com/' get_url = requests.get(url=target) # print(get_url.status_code) # print(get_url.text) print(get_url.reason)//返回状态 print(get_url.headers) //返回HTTP响应中包含的服务器头的内容(和上面展示的内容差不多) print(get_url.request) print(get_url.request.headers)//返回请求中头的内容
OK {'Cache-Control': 'private, no-cache, no-store, proxy-revalidate, no-transform', 'Connection': 'keep-alive', 'Content-Encoding': 'gzip', 'Content-Type': 'text/html', 'Date': 'Sun, 09 Aug 2020 04:14:22 GMT', 'Last-Modified': 'Mon, 23 Jan 2017 13:23:55 GMT', 'Pragma': 'no-cache', 'Server': 'bfe/1.0.8.18', 'Set-Cookie': 'BDORZ=27315; max-age=86400; domain=.baidu.com; path=/', 'Transfer-Encoding': 'chunked'} <PreparedRequest [GET]> {'User-Agent': 'python-requests/2.22.0', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive'}
以上是Python网络爬虫requests库怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率
