10万个方程才能解决的量子问题被AI压缩成只需四个,不牺牲准确率
相互作用的电子在不同能量和温度下表现出多样的独特现象,假如我们对其周围环境进行改变,它们又会出现新的集体行为,例如自旋、配对波动等,然而处理电子之间的这些现象还存在很多困难。很多研究者使用重整化群(Renormalization Group, RG)来解决。
在高维数据背景下,机器学习 (ML) 技术和数据驱动方法的出现在量子物理中引发了研究者巨大的兴趣,到目前为止,ML 思想已被用于电子系统的相互作用。
本文中,来自博洛尼亚大学等机构的物理学家利用人工智能,将一个迄今为止需要 10 万个方程的量子问题,压缩为一个只需 4 个方程的小任务,而所有这些都在不牺牲准确率的情况下完成,这项研究于近日发表在《物理评论快报》上。
论文地址:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.136402
该研究的第一作者、博洛尼亚大学助理教授 Domenico Di Sante 表示:我们将这个浩大的工程耦合在一起,之后使用机器学习浓缩成一个手指都能数得过来的任务。
这项研究涉及这一问题,即电子在网格状晶格上运动时动作是怎样的。根据已有的经验,当两个电子占据同一晶格点阵时,它们就会产生相互作用。这一现象可以称为 Hubbard 模型,其是有些材料的理想化设置,基于此,科学家能够了解电子行为如何产生物质相,例如超导性,电子在没有阻力的情况下流过材料。在将新方法应用于更复杂的量子系统之前,该模型还可以作为新方法的试验场。
二维 Hubbard 模型示意图
Hubbard 模型看似简单,但即使是使用尖端计算方法处理少量的电子,也需要强大的算力。这是因为当电子相互作用时,电子之间就变成了量子力学纠缠问题:即使电子所处晶格的位置相距很远,也不能单独处理这两个电子,所以物理学家必须同时处理所有电子,而不是每次只处理一个电子。电子越多,量子力学纠缠就会越多,计算难度就会成倍增加。
研究量子系统的一个常用方法是重整化群。作为一种数学装置,物理学家用它来观察一个系统的行为,比如可以用来观察 Hubbard 模型。遗憾的是,一个重整化群记录了电子之间所有可能的耦合,这些耦合可能包含成千上万、数十万甚至数百万个需要求解的独立方程。最重要的是,方程很复杂:每个方程都代表一对相互作用的电子。
Di Sante 团队想知道他们是否可以使用一种称为神经网络的机器学习工具来使重整化群更易于管理。
就神经网络而言,首先,研究者使用机器学习程序对全尺寸重整化群建立连接;然后神经网络调整这些连接的强度,直到它找到一个小的方程集,生成与原始的、超大的重整化群相同的解。最后得出四个方程,即使只有四个,该程序的输出也捕捉到了 Hubbard 模型的物理性质。
Di Sante 表示:「神经网络本质上是一台能够发现隐藏模式的机器,这一结果超出了我们的预期。」
训练机器学习程序需要大量的算力,因而他们花费了数周的时间才完成。好消息是,现在他们的程序已经开始投入使用,稍微调整就能解决其他问题,而无需从头开始。
在谈到之后的研究方向时,Di Sante 表示需要验证新方法在更复杂的量子系统上的效果如何。此外,Di Sante 还表示,在关于重整化群的其他领域中使用该技术也有很大的可能性,例如宇宙学和神经科学。
论文概述
针对描述了正方形晶体上广泛研究的二维 t-t' Hubbard 模型的功能重整化群(fRG)流特征的尺度相关四顶点函数,研究者执行了数据驱动降维。他们证明在低维潜在空间中基于神经常微分方程(NODE)求解器的一个深度学习架构能够高效学习描述 Hubbard 模型各种磁性和 d-wave 超导状态的 fRG 动力学。
研究者进一步提出了动态模式分解分析,它能够确认少数模式确实足以捕获 fRG 动力学。研究证明了使用人工智能提取相关电子四顶点函数的紧凑表示的可能性,这是成功实现尖端量子场理论方法并解决多电子问题的最重要目标。
fRG 中的基本对象是顶点函数 V(k_1, k_2, k_3),在原则上需要计算和存储三个连续动量变量组成的一个函数。通过研究特定的理论模式,二维 Hubbard 模型认为这与 cuprates 以及广泛的有机导体相关。研究者表明,较低的维数表示可以捕获高维顶点函数的 fRG 流。
Hubbard 模型的 fRG 接地状态。研究者考虑的微观哈密顿量(Hamiltonian)如下公式(1)所示。
Hubbard 模型的 2 粒子特性通过温度流的一环(one-loop)fRG 方案进行研究,其中的 RG 流如下公式(2)所示。
下图 1 a)为 2 粒子顶点函数 V^Λ的一环 fRG 流方程图解表示。
接下来看深度学习 fRG。如下图 2 b)所示,通过在 fRG 流趋向强耦合以及一环近似分解之前检查 2 粒子顶点函数的耦合, 研究者认识到它们中的很多要么保持边缘状态要么在 RG 流下变得不相关。
研究者在基于适合当前高维问题的参数化 NODE 架构实现灵活的降维方案,该方法如下图 2 a)所示,重点关注深度神经网络。
下图 3 展示了在潜在空间的 fRG 动力学过程中,三个统计上高度相关的潜在空间表示 z 作为 NODE 神经网络的学得特征。
更多细节内容请参阅原论文。
以上是10万个方程才能解决的量子问题被AI压缩成只需四个,不牺牲准确率的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

时隔四个月,ByteDanceResearch与北京大学物理学院陈基课题组又一合作工作登上国际顶级刊物NatureCommunications:论文《TowardsthegroundstateofmoleculesviadiffusionMonteCarloonneuralnetworks》将神经网络与扩散蒙特卡洛方法结合,大幅提升神经网络方法在量子化学相关任务上的计算精度、效率以及体系规模,成为最新SOTA。论文链接:https://www.nature.com

尽管机器学习从20世纪50年代就已经存在,但随着计算机变得越来越强大,数据在爆炸式增长,使得人们如何利用人工智能获得竞争优势、提高洞察力和增长利润展开了广泛的实践。对于不同的应用场景,机器学习与微分方程都有着广泛的场景。 大家都已经使用机器学习了,尤其是基于神经网络的深度学习,chatGPT甚嚣尘上,还需要深入理解微分方程么?不论答案是啥,都会涉及到二者的对比,那么,机器学习与微分方程的区别又是什么呢?从爱情模型的微分方程说起这两个方程预测了夫妻恋爱关系的长久性,基于心理学家 John Got

6 月 23 日,澳大利亚量子计算公司 SQC(Silicon Quantum Computing)宣布推出世界上第一个量子集成电路。这是一个包含经典计算机芯片上所有基本组件的电路,但体量是在量子尺度上。SQC 团队使用这种量子处理器准确地模拟了一个有机聚乙炔分子的量子态——最终证明了新量子系统建模技术的有效性。「这是一个重大突破,」SQC 创始人 Michelle Simmons 说道。由于原子之间可能存在大量相互作用,如今的经典计算机甚至难以模拟相对较小的分子。SQC 原子级电路技术的开发将

量子计算可谓是目前最令人兴奋(和被炒作)的研究领域之一。 在这方面,德国和澳大利亚的初创公司Quantum Brilliance最近干了件大事。 世界上第一台基于金刚石的室温量子计算机在遥远的大洋洲成功安装! 世界第一台商用室温量子计算机简单来说,Quantum Brilliance的这台量子计算机,既不需要绝对零度,也不需要复杂的激光系统。 那么,为什么说室温是一件值得拿出来好好说道说道的事情呢? 量子计算系统的基本思想是,量子比特能够处于一种不仅仅是「1」或「0」的状态,而是某种称为「叠加

量子纠缠(quantumentanglement)是指粒子之间发生的一种特殊耦合现象。在纠缠态下,我们无法单独描述各个粒子的性质,只能描述整体系统的性质的现象,这种影响不随距离的改变而消失,哪怕粒子之间相隔整个宇宙也不会变。一项新的研究表明,使用量子纠缠机制,传感器可以在检测运动时更加准确且更快。科学家们认为,这些发现可能有助于发展不依赖GPS的导航系统。在美国亚利桑那大学等机构在《NaturePhotonics》提交的一项新研究中,研究人员对光机械传感器(optomechanicalsenso

本站4月25日消息,英伟达公司近日宣布和日本产业技术综合研究所(AIST)合作,搭建名为“ABCI-Q”的超级计算机,将整合传统超级计算机和量子计算机打造出混合云系统。由于英伟达表达单独运行量子计算器仍然会犯很多错误,因此超级计算机必须帮助解决错误,让复杂的运算变得更加顺畅。ABCI-Q+%执行高速、复杂计算的能力将有助于人工智能、能源和生物技术领域的研究和企业应用,例如提高新药开发和物流的效率率。该网站从报道中获悉,ABCI-Q+内置超过2000片英伟达H100TensorCoreGPU,并通

戈登贝尔奖(ACMGordonBellPrize)设立于1987年,由美国计算机学会颁发,被称为超算界的「诺贝尔奖」。该奖项每年颁发一次,用以表彰高性能计算领域取得的杰出成就。奖金1万美元,由高性能和并行计算领域先驱戈登·贝尔提供。近日,在全球超级计算大会SC23上,2023年ACM戈登贝尔奖授予了美国和印度研究人员组成的8人国际团队,他们实现了大规模量子精度的材料模拟。相关项目名称为「量子精度的大规模材料建模:金属合金中准晶体和相互作用扩展缺陷的从头计算模拟」。团队成员的背景各不相同,他们分别

作为生活在三维世界里的人,我们似乎都思考过一个问题:时空穿越是可以实现的吗?1916年,奥地利物理学家LudwigFlamm首次提出了「虫洞(wormhole)」的概念,1930年代由爱因斯坦及纳森·罗森在研究引力场方程时假设黑洞与白洞通过虫洞连接,因此「虫洞」又被称作「爱因斯坦—罗森桥」。「虫洞」被认为是宇宙中可能存在的「捷径」,物体通过这条捷径可以在瞬间进行时空转移。然而,科学家们一直无法证实虫洞的客观存在。现在,科学家们创造了有史以来第一个虫洞,研究论文登上了《Nature》杂志的封面
