首页 科技周边 人工智能 开发数字孪生前的七个步骤

开发数字孪生前的七个步骤

May 15, 2023 pm 09:34 PM
人工智能 数字孪生

开发数字孪生前的七个步骤


随着云基础设施、边缘计算、物联网、分布式数据管理平台和机器学习能力的进步,数字孪生已从科幻小说转变为更主流的业务能力。


长期以来,企业可以承受OT和IT之间的分离,但对于制造商、建筑业、零售业和其他必须连接物理世界和数字世界的企业而言,情况已不再如此。数字孪生是实现这种连接的一种渠道,其具有优化生产和提高质量的运营优势。更重要的是,当使用对真实世界数据的机器学习来改进产品、服务和业务流程时,可以带来战略收益。


以下为开发数字孪生前的7个步骤:


1、研究成功部署


在集思广益并深入任何新技术领域之前,还是建议先研究企业、用例和早期采用者所带来的好处。对于数字孪生,在制造、建筑、医疗保健和其他领域有很多示例,包括人脑本身。


任何新兴技术领域的领导者都在寻找激励采用的故事。有些应该是鼓舞人心并有助于说明可能性的艺术;而有些则必须务实并展示业务成果以吸引支持者。如果企业的直接竞争对手已经成功部署了数字孪生,那么突出其用例通常会产生一种紧迫感。


2、确定改变游戏规则的机会


建立数字孪生是昂贵的。例如,一个小组估计,为商业办公楼开发数字孪生的成本在120万到170万美元之间。因此,在开发数字孪生之前,团队应记录产品愿景、考虑业务原理,并估算财务收益。


有时,改变游戏规则的目标会推动投资。一个示例:2020年,TCS与当地一家非政府组织合作,解决了新出现的COVID-19热点问题。企业数字孪生模拟过程和情况,以模拟影响传播的因素——病毒特征、人口异质性和流动模式。这座城市的数字孪生是一项‘计算机实验’,旨在探索在不损害公共健康和安全的情况下有效的干预措施。


3、考虑生命周期管理


开发数字孪生需要时间和费用,也需要持续的支持成本来确保模型提供准确的结果。在尝试数字孪生之前要接受的三个原则:

  • 不要只是为了技术本身而试验技术。
  • 确保用于创建模型、服务或模拟的数字孪生群体代表现实世界中的人。
  • 准备MLOps工具集,以便快速可靠地从开发到部署数字孪生。

其实,这主要建议的是预先考虑整个生命周期的要素,尤其是支持机器学习模型和仪器自动化部署的功能。

4、利用系统设计工具

设计好业务案例和生命周期后,团队应该考虑使用哪些工具来开始其计划和实验?

以下是专业领域中使用的系统设计工具的一些示例:

  • Autodesk数字孪生,用于建筑、工程和建筑。
  • Bentley基础设施数字孪生,用于信号塔和供水系统等领域。
  • General Electric数字孪生,用于设备、网络和制造过程。
  • Siemens数字孪生,用于设计、开发和制造消费品。
  • Bosch数字孪生,用于智能建筑,包括空间管理和预测性维护。

这些只是少数几个例子,但对于从事数字孪生工作的技术人员来说,重要的是熟悉运营团队使用的工业平台。

5、定义用户角色和机会

每当技术人员开始一项技术计划时,确定最终用户和最终平台的使用角色至关重要。IT领导者应该定义谁从数字孪生中获益最多,通常情况下,主要受益者是从事运营工作的人员。

数字孪生的主要功能是合并OT/IT数据,并在需要时通过数据分析或AI/ML将这些数据集放入上下文。但其真正力量在于使工程师、维护人员和其他技术人员等OT能够检索数据点,因为他们能完全理解这些数据点。

了解用户角色是第一步,下一步是确定其工作流程和操作的哪些部分可以从数字孪生的数据收集、机器学习预测和场景规划功能中受益。

6、构建可扩展的数据平台

数字孪生生成的数据数pb甚至更多,必须对其进行保护、分析和用于维护机器学习模型。一个关键的架构考虑因素是设计用于收集物联网实时数据流的数据模型和流程,以及数字孪生的数据管理架构。

许多数据管理平台支持实时分析和大规模机器学习模型。但是,用于模拟数千个或更多实体(如制造组件或智能建筑)的行为的数字孪生将需要一个能够查询实体及其关系的数据模型。

7、建立云计算和新兴技术竞争力

安装数字孪生平台、集成来自数千个物联网传感器的数据,以及建立可扩展的数据平台,都需要IT在大规模部署技术基础设施方面具有核心竞争力。当IT团队考虑用例并试验数字孪生平台功能的实验时,IT领导者必须考虑支持生产就绪数字孪生所需的云、基础设施、集成和设备。

除了基础设施之外,还应开发支持新兴设备和利用分析的能力。数字孪生的成功始于强大的数字核心,由AI/ML和AR/VR等云原生应用支持,并帮助组织处理数据和应用,而不需要考虑基础设施。

总结

数字孪生具有巨大的潜力,但直到现在,对于许多没有先进技术能力的企业而言,其规模和复杂性都是遥不可及的。好在,此类情况已不再如此,学习并与运营合作的IT领导者有机会为其组织带来数字孪生能力。

以上是开发数字孪生前的七个步骤的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles