首页 科技周边 人工智能 人工智能的未来是人机环境系统智能

人工智能的未来是人机环境系统智能

May 16, 2023 pm 07:52 PM
人工智能 机器计算 军事智能

人工智能的未来是人机环境系统智能

军事智能就像战争一样,是一团迷雾,存在着大量的不确定性,是不可预知、不可预测的。从当前人工智能的发展趋势来看,可预见的未来战争中,存在着许多人机融合隐患仍未能解决,具体有:

(1)在复杂的信息环境中,人类和机器在特定的时间内吸收、消化和运用有限的信息,对人而言,人的压力越大,误解的信息越多,也就越容易导致困惑、迷茫和意外。对机器而言,对于跨领域非结构化数据的学习理解预测,依然是非常困难的事。

(2)战争中决策所需要的信息在时间和空间上的广泛分布,决定了一些关键信息仍然很难获取。而且机器采集到的重要的客观物理性数据与人类获得的主观加工后的信息和知识很难协调融合。

(3)未来的战争中,存在着大量的非线性特征和出乎意料的多变性,常常会导致作战过程和结果诸多不可预见性,基于公理的形式化逻辑推理已远远不能满足复杂多变战况决策的需求。鉴于核武器的不断蔓延和扩散,国家无论大小,国与国之间的未来战争成本将会越来越高。无论人工智能怎么发展,未来是属于人类的,应该由人类共同定义未来战争的游戏规则并决定人工智能的命运,而不是由人工智能决定人类的命运,究其因,人工智能是逻辑的,而未来战争不仅仅是逻辑的,还存在着大量的非逻辑因素。

(4)鉴于各国对自主装备分类不同,对于强人工智能或叫通用人工智能类武器概念的定义和理解差距都很大,所以当前最重要的工作不时具体的技术问题如何解决(技术迭代更新的非常快),而是有关人工智能应用基本概念和定义如何达成共识,如::①什么是AI?②什么是自主?③自动化与智能化区别是?④机器计算与人算计的区别是?⑤人机功能/能力分配的边界是?⑥数据、AI与风险责任的关系如何?⑦可计算性与可判定性区别等等。

有的定义还很粗略,需要进一步细化,如从人类安全角度看,禁止“人在回路外”的自主武器是符合普世价值且减少失控风险必要之举,但是什么样的人在系统回路中往往就被忽略,一些不负责任的人在防疫系统中可能会更糟糕;

(5)对于世界上自主技术的发展情况,建议设立联合评估小组,定期对自主技术发展情况进行细致的评估与预警,对技术发展关口进行把关,对技术发展进行预测分析,对进行敏感技术开发的重点机构和研发人员进行定向监督,设立一定程度的学术开放要求。

(6)AI军用化发展所面临的安全风险和挑战主要有:

①人工智能和自主系统可能会导致事态意外升级和危机不稳定;

②人工智能和自主系统将会降低对手之间的战略稳定性(如中美、美俄之间战略关系将更加紧张);

③人和自主系统的不同组合(包括人判断+人决策、人判断+机决策、机判断+人决策、机判断+机决策)会影响双方的态势升级;

④机器理解人发出的威慑信号(尤其是降级信号)较差;

⑤ 自主系统无意攻击友军或平民的事故将引起更多质疑;

⑥ 人工智能和自主系统可能会导致军备竞赛的不稳定性;

⑦ 自主系统的扩散可能引发人们认真寻找对策,这些对策将加剧不确定性,且各国将担忧安全问题。

计算应对“复”,算计处理“杂”,写作文就是一种计算计过程,只不过不是用数字图形,而是用文字符号。

人类不可能完全掌握世界,但可以尝试理解世界,这种智能会催生出更新的哲学范畴和思考。

在冯·诺伊曼生前出版的最后一本关于大脑和计算机之间关系的著作,《计算机与人脑》(The Computer and the Brain)中,冯·诺伊曼总结了自己以上观点,并且承认大脑不仅远比机器复杂,而且大脑似乎沿着他最初设想的不同路线来实现其功能。几乎盖棺论定般地,他认为使用二进制的计算机完全不适合用来模拟大脑。这是因为他已经几乎可以论定,大脑的逻辑结构,和逻辑学、数学的逻辑结构完全不同,那么,“从评估中枢神经系统真正使用的数学或逻辑语音的角度来看,我们使用的数学的外在形式完全不适合做这样的工作。”​

最近的科学研究也证实了这一点。法国神经科学家罗曼·布雷特(RomainBrette)的发现从根本上质疑了大脑和计算机底层架构上的一致性,即神经编码。科学家们受到大脑和计算机之间隐喻的影响,将技术意义层面上的刺激和神经元之间的联系,转移到了表征意义上神经元编码彻底代表了刺激。事实上,神经网络是如何以一种最佳的解码方式将信号传递给脑中的理想化观察者的“下游结构”(downstreamstructure),至今是未知的,甚至在简单的模型中也没有明确的假说。那么,这种隐喻会导致科学家们只关注感觉和神经元之间的联系,而忽视动物的行为真正对神经元的影响。

匈牙利神经科学家盖伊尔吉·布萨基的研究结果更为激进。在他的《由内而外的脑》一书中,布萨基指出,大脑事实上并不是在通过编码表征信息,而是构建了信息。在他看来,脑并不是简单被动地接受刺激,然后通过神经编码来表征他们,而是通过积极地搜索各种可能性来测试各种可能的选择。这无疑是对于用计算机来比喻大脑的隐喻的全盘推翻。

无论是从脑科学,还是计算机科学的角度,这种将大脑比作计算机的隐喻寿命或许都将不再延续。科布敏锐地指出,这种隐喻被作用到人们对于计算机的研究之中,让人们盲觉,缩小了真正该研究的范围。

以上是人工智能的未来是人机环境系统智能的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles