UC伯克利LLM准中文排行榜来了!GPT-4稳居第一,国人开源RNN模型冲进前六
前段时间,来自LMSYS Org(UC伯克利主导)的研究人员搞了个大新闻——大语言模型版排位赛!
这次,团队不仅带来了4位新玩家,而且还有一个(准)中文排行榜。
- OpenAI GPT-4
- OpenAI GPT-3.5-turbo
- Anthropic Claude-v1
- RWKV-4-Raven-14B(开源)
毫无疑问,只要GPT-4参战,必定是稳居第一。
不过,出乎意料的是,Claude不仅超过了把OpenAI带上神坛的GPT-3.5位列第二,而且只比GPT-4差了50分。
相比之下,排名第三的GPT-3.5只比130亿参数的最强开源模型Vicuna高了72分。
而140亿参数的「纯RNN模型」RWKV-4-Raven-14B凭借着卓越的表现,超越一众Transformer模型排到了第6——除Vicuna模型外,RWKV在与所有其他开源模型的非平局比赛中赢得了超过50%的比赛。
此外,团队还分别制作了「仅英语」和「非英语」(其中大部分是中文)这两个单独的排行榜。
可以看到,不少模型的排位都出现了明显的变化。
比如,用更多中文数据训练的ChatGLM-6B确实表现更好,而GPT-3.5也成功超越Claude排到了第二的位置。
本次更新的主要贡献者是盛颖、Lianmin Zheng、Hao Zhang、Joseph E. Gonzalez和Ion Stoica。
盛颖是LMSYS Org的3个创始人之一(另外两位是Lianmin Zheng和Hao Zhang),斯坦福大学计算机科学系的博士生。
她也是之前爆火的、可以在单GPU上可以跑175B模型推理的系统FlexGen的一作,目前已获8k星。
论文地址:https://arxiv.org/abs/2303.06865
项目地址:https://github.com/FMInference/FlexGen
个人主页:https://sites.google.com/view/yingsheng/home
「开源」VS「闭源」
在社区的帮助下,团队共收集了13k条匿名投票,并且有了一些有趣的发现。
专有与开源的差距
在三个专有模型中,Anthropic的Claude模型比GPT-3.5-turbo更受用户欢迎。
而且,Claude在与最强大的GPT-4竞争时,也表现得非常有竞争力。
从下面这个胜率图来看,GPT-4和Claude之间的66场非平局比赛中,Claude赢得了32场(48%)比赛。
所有非平局A vs B对战中,模型A胜利的比例
然而,其他开源模型与这三个专有模型之间,依然存在着很大的差距。
特别是,GPT-4以1274的Elo分数领跑排行榜。这比榜单上最好的开源替代——Vicuna-13B——要高出近200分。
在去掉平局后,GPT-4在与Vicuna-13B对战时赢得了82%的比赛,甚至在与前一代GPT-3.5-turbo对战时赢得了79%的比赛。
然而,值得注意的是,排行榜上的这些开源模型通常具有比专有模型更少的参数,范围在30亿 - 140亿之间。
实际上,最近在LLM和数据策划方面的进展使得使用较小模型取得显著性能改进成为可能。
谷歌的最新PaLM 2就是一个很好的例子:我们知道PaLM 2在使用较小模型大小时,比其前一代实现了更好的性能。
因此,团队对开源语言模型迎头赶上充满乐观。
GPT-4在何时会「翻车」?
在下图中,用户提出了一个需要仔细推理和规划的棘手问题。虽然Claude和GPT-4提供了类似的答案,但Claude的回应稍微好一些。
然而,由于采样的随机性,团队发现这种情况并不能总能复刻。有时GPT-4也能像Claude一样给出相同的顺序,但在这次生成试验中失败了。
另外,团队注意到,当使用OpenAI API和ChatGPT接口时,GPT-4的行为略有不同,这可能是由于不同的提示、采样参数或其他未知因素导致的。
用户更喜欢Claude而不是GPT-4的一个例子
在下图中,尽管Claude和GPT-4都具有惊人的能力,但它们仍在处理这类复杂的推理问题上挣扎。
一个用户认为Claude和GPT-4都错了的例子
除了这些棘手的情况,还有许多并不需要复杂推理或知识的简单问题。
在这种情况下,像Vicuna这样的开源模型可以与GPT-4表现相当,因此我们可能可以使用稍微弱一些(但更小或更便宜)的大型语言模型(LLM)来替代像GPT-4这样更强大的模型。
Elo分数的变化
自从三个强大的专有模型参与以来,聊天机器人竞技场的竞争从未如此激烈。
由于在与专有模型对战时,开源模型输掉了不少比赛,因此它们的Elo分数都有所下降。
最后,团队还计划开放一些API,让用户可以注册自己的聊天机器人来参加排位赛。
以上是UC伯克利LLM准中文排行榜来了!GPT-4稳居第一,国人开源RNN模型冲进前六的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的
