目录
造成人工智能偏见的人为和系统偏见是什么?
NIST 推荐的社会技术观点是什么?
首页 科技周边 人工智能 NIST:人工智能偏见远远超出数据本身

NIST:人工智能偏见远远超出数据本身

May 17, 2023 pm 11:10 PM
人工智能 数据 ml

​到目前为止,应该没有人会质疑大多数人工智能都是建立在某种程度上有问题的偏见之上的,而且目前也在使用这种偏见。这是一个被观察和证实了数百次的挑战。组织机构面临的挑战是根除人工智能偏见,而不是仅仅满足于推动更好的、无偏见的数据。

NIST:人工智能偏见远远超出数据本身

在对其出版物《迈向人工智能中识别和管理偏见的标准》(NIST 1270特别出版物)的一次重大修订中,在去年的公众评论期之后,美国国家标准与技术研究所(NIST)提出了一个强有力的论点,即超越数据甚至ML过程来发现和摧毁AI偏见。

作者们没有指责收集不当或标记不当的数据,而是表示,人工智能偏见的下一个前沿是“人类和系统的制度和社会因素”,并推动从社会技术角度寻找更好的答案。

“环境决定一切,”NIST人工智能偏见的首席研究员、该报告的作者之一瑞瓦·施瓦茨(Reva Schwartz)说。“人工智能系统不是孤立运行的。他们帮助人们做出直接影响他人生活的决定。如果我们要开发值得信赖的人工智能系统,我们需要考虑所有可能削弱公众对人工智能的信任的因素。这些因素中有许多已经超越了技术本身,还影响了技术,我们从各种各样的人和组织收到的评论都强调了这一点。”

造成人工智能偏见的人为和系统偏见是什么?

根据NIST的报告,人类基础分为两大类:个体和群体,每个类别下都有许多特定的偏见。

个体的人类偏见包括自动化自满,即人们过度依赖自动化技能;内隐偏见,一种影响某人做决定的无意识的信念、态度、联想或刻板印象;还有确认偏见,也就是人们更喜欢与他们现有信念一致或一致的信息。

群体人类基础包括群体思维(groupthink),即人们出于顺应群体或避免分歧的愿望而做出非最优决策的现象;资金偏见,当报告有偏见的结果以满足一个资助机构或财政支持者,这反过来可能会受到额外的个人/群体偏见的影响。

对于系统性偏见,NIST报告将其定义为历史的、社会的和制度的。从本质上讲,长期存在的偏见随着时间的推移已经被编入社会和机构,并在很大程度上被视为“事实”或“事情就是这样的”。

这些偏见之所以重要,是因为人工智能部署对当今组织的工作方式有多么大的影响。由于种族偏见的数据,人们被剥夺了抵押贷款,剥夺了他们首次拥有住房的机会。求职者被拒绝面试,因为人工智能被训练成历史上的雇佣决定,这更倾向于男性而不是女性。有前途的年轻学生会因为他们的姓氏与过去成功人士的名字不匹配而被大学拒绝面试或录取。

换句话说:有偏见的人工智能创造了与效率开口一样多的锁门 。 如果组织不积极努力消除部署中的偏见,他们很快就会发现自己在思考和操作方面严重缺乏信任。

NIST 推荐的社会技术观点是什么?

其核心是认识到任何人工智能应用的结果都不只是数学和计算输入。它们是由开发人员或数据科学家制作的,他们的职位和机构各不相同,他们都有一定程度的负担。

NIST的报告中写道:“人工智能的社会技术方法考虑了从数据集建模的价值和行为,与它们交互的人类,以及复杂的组织因素,这些因素涉及到它们的委托、设计、开发和最终部署。”

NIST认为,通过社会技术视角,组织可以通过“准确性、可解释性和可理解性、隐私性、可靠性、鲁棒性、安全性和安全弹性”来培养信任。

他们的建议之一是让组织实施或改进他们的测试、评估、确认和验证(TEVV)过程。在给定的数据集或训练过的模型中,应该有方法从数学上验证偏差。他们还建议在AI开发工作中创造更多来自不同领域和职位的参与,并拥有来自不同部门或组织外部的多个利益相关者。 “​human-in-the-loop”模型中,个人或集体不断纠正基本的 ML 输出,也是消除偏见的有效工具。

除了这些和修订后的报告之外,还有NIST的人工智能风险管理框架(AI RMF),这是一套由共识驱动的建议集,用于管理AI系统涉及的风险。一旦完成,它将涵盖人工智能技术和产品的透明度、设计和开发、治理和测试。人工智能RMF的初始评论期已经过去,但我们仍然有很多机会了解人工智能的风险和缓解措施。

以上是NIST:人工智能偏见远远超出数据本身的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

AI初创集体跳槽OpenAI,Ilya出走后安全团队重整旗鼓! AI初创集体跳槽OpenAI,Ilya出走后安全团队重整旗鼓! Jun 08, 2024 pm 01:00 PM

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles