蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型
尽管大型语言模型能力惊人,但由于规模较大,其部署所需的成本往往巨大。华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。相对于LLM,这种方法对于训练小型模型并应用于特定任务方面更加有效,且所需的训练数据要比传统的微调和蒸馏更少。在一个基准任务上,他们的 770M T5 模型胜过了 540B PaLM 模型。令人印象深刻的是,他们的模型只使用了可用数据的 80%。
虽然大型语言模型(LLMs)展现了令人印象深刻的少样本学习能力,但将这样大规模的模型部署在现实应用中是很难的。为 1750 亿参数规模的 LLM 提供服务的专门基础设施,至少需要 350GB 的 GPU 内存。更甚者,现今最先进的 LLM 是由超过 5000 亿的参数组成的,这意味着它需要更多的内存和计算资源。这样的计算要求对于大多数生产商来说都是难以企及的,更何况是要求低延迟的应用了。
为了解决大型模型的这个问题,部署者往往采用小一些的特定模型来替代。这些小一点的模型用常见范式 —— 微调或是蒸馏来进行训练。微调使用下游的人类注释数据升级一个预训练过的小模型。蒸馏用较大的 LLM 产生的标签训练同样较小的模型。但是很遗憾,这些范式在缩小模型规模的同时也付出了代价:为了达到与 LLM 相当的性能,微调需要昂贵的人类标签,而蒸馏需要大量很难获得的无标签数据。
在一篇题为「Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes」的论文中,来自华盛顿大学、谷歌的研究者引入了一种新的简单机制 —— 逐步蒸馏(Distilling step-bystep),用于使用更少的训练数据来训练更小的模型。这种机制减少了微调和蒸馏 LLM 所需的训练数据量,使之有更小的模型规模。
论文链接:https://arxiv.org/pdf/2305.02301v1.pdf
该机制的核心是换一种角度,将 LLM 看作是可以推理的 agent,而不是噪声标签的来源。LLM 可以产生自然语言的理由(rationale),这些理由可以用来解释和支持模型所预测的标签。例如,当被问及「一位先生携带着打高尔夫球的设备,他可能有什么?(a) 球杆,(b) 礼堂,(c) 冥想中心,(d) 会议,(e) 教堂」,LLM 可以通过思维链(CoT)推理回答出「(a)球杆」,并通过说明「答案一定是用来打高尔夫球的东西」来合理化这个标签。在上述选择中,只有球杆是用来打高尔夫的。研究者使用这些理由作为额外更丰富的信息在多任务训练设置中训练较小的模型,并进行标签预测和理由预测。
如图 1 所示,逐步蒸馏可以学习特定任务的小模型,这些模型的参数量还不到 LLM 的 1/500。与传统的微调或蒸馏相比,逐步蒸馏使用的训练示例要也少得多。
实验结果显示,在 4 个 NLP 基准中,有三个有希望的实验结论。
- 第一,相对于微调和蒸馏,逐步蒸馏模型在各数据集上实现了更好的性能,平均减少了 50% 以上的训练实例(最多可减少 85% 以上)。
- 第二,我们的模型在模型尺寸更小的情况下表现优于 LLM(最多可以小到 2000 倍),极大地降低了模型部署所需的计算成本。
- 第三,该研究在缩减模型尺寸的同时,也减少了超越 LLM 所需要的数据量。研究者使用一个 770M 的 T5 模型超越了 540B 参数的 LLM 的性能。这个较小的模型只使用了现有微调方法 80% 的标记数据集。
当只有未标记的数据时,小模型的表现相比 LLM 而言仍然有过之而无不及 —— 只用一个 11B 的 T5 模型就超过了 540B 的 PaLM 的性能。
该研究进一步表明,当一个较小的模型表现比 LLM 差时,与标准的蒸馏方法相比,逐步蒸馏可以更有效地利用额外的无标签数据来使较小的模型媲美 LLM 的性能。
逐步蒸馏
研究者提出了逐步蒸馏这个新范式,是利用 LLM 对其预测的推理能力,以数据高效率的方式训练更小的模型。整体框架如图 2 所示。
该范式有两个简单的步骤:首先,给定一个 LLM 和一个无标签的数据集,提示 LLM 生成输出标签以及证明该标签成立的理由。理由用自然语言解释,为模型预测的标签提供支持(见图 2)。理由是当前自监督 LLM 的一个涌现的行为属性。
然后,除了任务标签之外,利用这些理由来训练更小的下游模型。说白了,理由能提供了更丰富、更详细的信息,来说明一个输入为什么被映射到一个特定的输出标签。
实验结果
研究者在实验中验证了逐步蒸馏的有效性。首先,与标准的微调和任务蒸馏方法相比,逐步蒸馏有助于实现更好的性能,训练实例的数量少得多,大幅提高了学习小型特定任务模型的数据效率。
其次,研究表明,逐步蒸馏方法以更小的模型大小超越了 LLM 的性能,与 llm 相比,大大降低了部署成本。
最后,研究者调查了逐步蒸馏方法在超过 LLM 的性能方面所需的最低资源,包括训练示例数量和模型大小。他们展示了逐步蒸馏方法通过使用更少的数据和更小的模型,同时提高了数据效率和部署效率。
以上是蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
