从技术层面聊聊双目自动驾驶系统为何难以普及?
单目视觉是Mobileye(ME)的看家法宝,其实当年它也考虑过双目,最终选择放弃。
单目的测距和3-D估计靠什么?是检测目标的Bounding Box(BB),如果无法检测的障碍物,该系统就无法估计其距离和3-D姿态/朝向。没有深度学习的时候,ME主要是基于BB,摄像头标定得到的姿态和高度以及路面平直的假设估算距离。
有了深度学习,可以根据3-D的ground truth来训练NN模型,得到3D大小和姿态估计,距离是基于平行线原理(single view metrology)得到的。不久前百度Apollo公布的单目L3解决方案讲的比较清楚了,参考论文是“3D Bounding Box Estimation by Deep Learning and Geometry".
双目当然可以算视差和深度了,即使没有检测出障碍物(因为有附加的深度信息,检测器会比单目好),也会报警。问题是,双目视觉系统估计视差没那么容易,立体匹配是计算机视觉典型的难题,基线宽得到远目标测距准,而基线短得到近目标测距结果好,这里是存在折衷的。
目前市场上ADAS存在的双目视觉系统就是Subaru EyeSight,据说性能还行。
百度推出的阿波龙L4摆渡车量产100台,就安装了双目系统。还有欧盟自主泊车项目V-Charge也采用了前向双目视觉系统,另外自动驾驶研发系统Berta Benz也是,而且和雷达系统后融合,其中双目匹配的障碍物检测算法Stixel很出名。以前Bosch和Conti这些Tier-1公司也研制过双目视觉解决方案,但没有在市场上产生影响力,据说被砍掉了。
谈到双目系统的难点,除了立体匹配,还有标定。标定后的系统会出现“漂移”的,所以在线标定是必须具有的。单目也是一样,因为轮胎变形和车体颠簸都会影响摄像头外参数变化,必须在线做标定修正一些参数,比如仰角(pitch angle)和偏角(yaw angle)。
双目在线标定就更复杂些,因为双目匹配尽量简化成1-D搜索,所以需要通过stereo rectification将两个镜头光轴方向平行并和基线垂直。所以针对获得的gain相比,增加的复杂度和成本,如果不划算商家就会放弃。
最近重提双目视觉,是因为硅谷芯片公司安霸(Ambarella)在2014年收购意大利帕尔马大学的Vis Lab,研制了双目的ADAS和自动驾驶芯片,去年CES之后就开始进军车企和Tier-1。而且,安霸目前正在继续研究提升该系统的性能。
下图就是它在车顶安装6对立体视觉系统的示意图,其中它们的基线宽度可以不一样的,相应地有效检测距离也就不同。笔者曾坐过它的自动驾驶车,远处可以看到200米,近处20-30米。它确实可以做在线标定,随时调整一些双目视觉的参数。
01 立体匹配
先说立体匹配,即视差/深度估计。如图假设左右摄像头焦距f,基线(两个光心连线)宽B,3-D点X的深度z,而其视差(投影到左右图像的2-D点,其坐标差)即
可见视差能够反算深度值。但是这里最难的就是左右镜头看到的图像如何确定是同一个目标,即匹配问题。
匹配方法分两种,全局法和局部法,双目匹配的四个步骤:
- 匹配成本(matching cost)计算;
- 成本聚集(aggregation);
- 视差(disparity)计算/优化;
- 视差修正(refinement)。
最著名的局部法就是SGM(semi-global matching),很多产品在用的方法都是基于此的改进,不少视觉芯片都采用这种算法。
SGM就是把一个全局优化近似成多个局部优化的问题组合,如下公式是2-D匹配的优化目标函数,SGM实现成为多个1-D优化路径之和
下图是沿着水平方向的路径优化函数
Census Transform是将8/24比特的像素变成一个2进制序列,另外一个2值特征叫LBP(local binary pattern)和它相似。立体匹配算法就是基于这个变换将匹配变成一个Hamming距离的最小化搜索。Intel的RealSense当年就是收购了一个成立于1994年基于该技术的双目视觉创业公司,还收购另外几个小公司把他们合在一起做出来的。
下图是CS变换的示意图:
PatchMatch是一个加速图像模版匹配的算法,被用在光流计算和视差估计上。之前微软研究院曾经做过一个基于单目手机相机3-D重建的项目,仿造以前成功的基于RGB-D算法KinectFusion,名字也类似MonoFusion,其中深度图估计就是采用一个修正的PatchMatch方法。
其基本思想就是对视差和平面参数随机初始化,然后通过邻域像素之间信息传播更新估计。PM算法分五个步骤:
- 1) 空间传播(Spatial propagation): 每个像素检查左边和上边邻居视差和平面参数,如果匹配成本变小就取代当前估计;
- 2) 视角传播(View propagation): 其他视角的像素做变换,检查其对应图像的估计,如果变小就取代;
- 3) 时域传播(Temporal propagation): 前后帧考虑对应像素的估计;
- 4) 平面细化(Plane refinement): 随机产生样本,如果估计使匹配成本下降,更新。
- 5) 后处理(Post-processing): 左右一致性和加权中值滤波器去除出格点(outliers)。
下图是PM的示意图:
02 在线标定
再说在线标定。
这是一个利用路上标志线(斑马线)的标定方法:已知斑马线的平行线模式,检测斑马线并提取角点,计算斑马线模式和路面实现匹配的单映性变换(Homography)参数,得到标定参数。
另外一个方法基于VO和SLAM,比较复杂,不过可以同时做基于地图的定位。采用SLAM做在线标定,不适合高频率操作,下图是其算法的流程图:1-4步, 通过立体视觉SLAM获取全局连续地图;第5步给出双目相机变换初始估计,第6步把所有立体相机的地图聚合成一个地图;7-8步获取多个相机之间的姿态。
和单目方法类似,采用车道线平行和路平面这个假设可以快速完成在线标定,即消失点(vanishing point)理论:假设一个平坦的道路模型,清晰的纵向车道线,没有其他目标的边缘和它们平行;要求驾驶车辆速度慢,车道线连续,左右相机的双目配置要左摄像头相对路面的仰角/斜角(yaw/roll angles)比较小;这样跟初始化的消失点(与线下标定相关)比较可以算出双目外参数的漂移量(图5-269),其算法就是从消失点估计摄像头仰角/斜角。
03 典型的双目自动驾驶系统
下面介绍几个典型的双目自动驾驶系统。
Berta Benz采用的障碍物检测算法Stixel基于以下假设:场景中的目标描述为列,重心的原因目标是站立在地面上,每个目标上的上部比下部的深度大。下图(a-d) 介绍了SGM视差结果如何生成Stixel分割结果:
下图是Stixels 计算的示意图:(a)基于动态规划的自由驾驶空间计算 (b) 高度分割中的属性值 (c) 成本图像 (灰度值反过来) (d) 高度分割。
这是他们加上深度学习做视差融合之后再做Stixel的框图和新结果:
介绍一个VisLab早期双目障碍物的算法,Generic Obstacle and Lane Detection system (GOLD)。基于IPM(Inverse Perspective Mapping),检测车道线,根据左右图像的差计算路上障碍物:
(a) Left. (b) Right (c) Remapped left. (d) Remapped right. (e) Thresholded and filtered difference between remapped views. (f) In light gray, the road area visible from both cameras.
(a) Original. (b) Remapped. (c) Filtered. (d) Enhanced. (e) Binarized.
GOLD system architecture
这是VisLab参加自动驾驶比赛VIAC (VisLab Intercontinental Autonomous Challenge)的车辆,除了双目摄像头以外,车上还有激光雷达作为道路分类的辅助。
这是其双目障碍物检测流程图:视差估计利用了SGM算法和基于SAD的相关算法。
后处理中加了两个DSI(Disparity Space Image)空间的滤波器,见图5-274,一个是平滑处理,另一个是基于惯导(IMU)的运动轨迹处理。
障碍物检测算法采用了JPL的方法,基于空间布置特性以及车辆的物理特性聚类得到障碍物。物理特性包括最大的高度(车辆),最小高度(障碍物)和最大道路可通过范围,这些约束定义了一个空间截断锥(truncated cone), 如图所示,那么在聚类过程中凡是落在截断锥内的点划为障碍物。
为加速视差估计算法,采用了划分DSI的方法:
另外一种经典的方法是根据路面方程(立体视觉)得到路面视差,基于此计算出路面的障碍物:
04 总结
总的看,双目检测障碍物的方法基本基于视差图,基于路面视差的方法较多。也许随着深度学习发展的突飞猛进,加上计算平台的增强,双目自动驾驶系统也会普及起来。
以上是从技术层面聊聊双目自动驾驶系统为何难以普及?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

通用矩阵乘法(GeneralMatrixMultiplication,GEMM)是许多应用程序和算法中至关重要的一部分,也是评估计算机硬件性能的重要指标之一。通过深入研究和优化GEMM的实现,可以帮助我们更好地理解高性能计算以及软硬件系统之间的关系。在计算机科学中,对GEMM进行有效的优化可以提高计算速度并节省资源,这对于提高计算机系统的整体性能至关重要。深入了解GEMM的工作原理和优化方法,有助于我们更好地利用现代计算硬件的潜力,并为各种复杂计算任务提供更高效的解决方案。通过对GEMM性能的优

7月29日,在AITO问界第四十万台新车下线仪式上,华为常务董事、终端BG董事长、智能汽车解决方案BU董事长余承东出席发表演讲并宣布,问界系列车型将于今年8月迎来华为干昆ADS3.0版本的上市,并计划在8月至9月间陆续推送升级。 8月6日即将发布的享界S9将首发华为ADS3.0智能驾驶系统。华为干昆ADS3.0版本在激光雷达的辅助下,将大幅提升智驾能力,具备融合端到端的能力,并采用GOD(通用障碍物识别)/PDP(预测决策规控)全新端到端架构,提供车位到车位智驾领航NCA功能,并升级CAS3.0全

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

苹果16系统中版本最好的是iOS16.1.4,iOS16系统的最佳版本可能因人而异添加和日常使用体验的提升也受到了很多用户的好评。苹果16系统哪个版本最好答:iOS16.1.4iOS16系统的最佳版本可能因人而异。根据公开的消息,2022年推出的iOS16被认为是一个非常稳定且性能优越的版本,用户对其整体体验也相当满意。此外,iOS16中新功能的添加和日常使用体验的提升也受到了很多用户的好评。特别是在更新后的电池续航能力、信号表现和发热控制方面,用户的反馈都比较积极。然而,考虑到iPhone14

4月11日,华为官方首次宣布HarmonyOS4.2百机升级计划,此次共有180余款设备参与升级,品类覆盖手机、平板、手表、耳机、智慧屏等设备。过去一个月,随着HarmonyOS4.2百机升级计划的稳步推进,包括华为Pocket2、华为MateX5系列、nova12系列、华为Pura系列等多款热门机型也已纷纷展开升级适配,这意味着会有更多华为机型用户享受到HarmonyOS带来的常用常新体验。从用户反馈来看,华为Mate60系列机型在升级HarmonyOS4.2之后,体验全方位跃升。尤其是华为M

纯视觉的标注方案,主要是利用视觉加上一些GPS、IMU和轮速传感器的数据进行动态标注。当然面向量产场景的话,不一定非要是纯视觉,有一些量产的车辆里面,会有像固态雷达(AT128)这样的传感器。如果从量产的角度做数据闭环,把这些传感器都用上,可以有效地解决动态物体的标注问题。但是我们的方案里面,是没有固态雷达的。所以,我们就介绍这种最通用的量产标注方案。纯视觉的标注方案的核心在于高精度的pose重建。我们采用StructurefromMotion(SFM)的pose重建方案,来保证重建精度。但是传

Linux和Windows是两种常见的操作系统,分别代表了开源的Linux系统和商业的Windows系统。在这两种操作系统中,都存在着命令行界面,用于用户与操作系统进行交互。在Linux系统中,用户使用的是Shell命令行,而在Windows系统中,用户使用的是cmd命令行。Linux系统中的Shell命令行是一个非常强大的工具,可以完成几乎所有的系统管理任

电脑操作系统就是用于管理电脑硬件和软件程序的系统,同时也是根据所有软件系统去开发的操作系统程序,而不同的操作系统,对应的使用人群也是不同的,那么电脑系统有哪些呢?下面,小编跟大家分享电脑操作系统有哪些。所谓的操作系统就是管理电脑硬件与软件程序,所有的软件都是基于操作系统程序的基础上去开发的。其实操作系统种类是很多的,用工业用的,商业用的,个人用的,涉及的范围很广。下面,小编跟大家讲解电脑操作系统有哪些。电脑操作系统有哪些windows系统Windows系统是由美国微软公司开发的一款操作系统。比最
