golang lru实现
LRU(Least Recently Used)算法是一种常见的缓存替换策略。在缓存达到预设上限时,缓存会自动淘汰最近最少使用的数据,以释放出空间。
在 Golang 中,我们可以使用双向链表和哈希表来实现 LRU 缓存。在本文中,我们将介绍如何使用这两种数据结构实现 LRU 缓存。
双向链表的作用在于维护缓存的数据顺序,每次插入新数据或者访问数据时,都将对该数据进行提前。同时,在缓存达到上限时,我们可以从链表的末端删除最近最少使用的数据。
哈希表的作用在于加速数据的查找,每次进行数据访问时,通过哈希表中存储的数据索引,我们可以快速地查找到相应的缓存数据。因此,我们将在实现过程中对哈希表进行操作。
接下来,我们将讲解如何实现基于双向链表和哈希表的 LRU 缓存。我们定义一个 LRUCache 结构体,并声明链表头和链表尾指针,以及哈希表 map 和缓存容量 capacity。
type LRUCache struct { head, tail *entry // 链表头和链表尾指针 cache map[int]*entry // 哈希表存储缓存中的数据 capacity int // 缓存容量 }
接下来,我们将定义双向链表节点的结构体。
type entry struct { key, value int // 存储节点的键值对 prev, next *entry // 前驱和后继指针 }
这里,我们使用 prev 和 next 分别表示节点的前驱和后继指针,key 和 value 分别表示该节点的键值对。
接下来,我们将定义 LRUCache 的构造函数 NewLRUCache,并传入缓存容量 capacity。
func NewLRUCache(capacity int) *LRUCache { return &LRUCache{ cache: make(map[int]*entry), capacity: capacity, } }
在构造函数中,我们将初始化哈希表和缓存容量。
接下来,我们将定义 LRUCache 的 Get 和 Put 方法来实现数据的访问和存储。
Get 方法的实现:
func (c *LRUCache) Get(key int) int { if elem, ok := c.cache[key]; ok { // 更新节点位置 c.moveToHead(elem) return elem.value } return -1 }
首先,我们从哈希表中查找是否存在相应的数据,如果存在,则将节点移到链表的头部,并返回节点存储的值。否则,返回 -1。
下面是 moveToHead 方法的实现:
func (c *LRUCache) moveToHead(elem *entry) { if elem == c.head { return } else if elem == c.tail { c.tail = elem.prev } else { elem.prev.next = elem.next elem.next.prev = elem.prev } elem.prev = nil elem.next = c.head c.head.prev = elem c.head = elem }
该方法接收一个节点指针 elem,用于将该节点移到链表头部。首先,如果该节点已经是链表头部,则返回;否则,如果该节点是链表尾部,则更新链表尾部指针 tail;否则,将该节点从链表中删除,并将该节点放到链表头部。
Put 方法的实现:
func (c *LRUCache) Put(key, value int) { if elem, ok := c.cache[key]; ok { elem.value = value c.moveToHead(elem) } else { // 创建新节点 elem := &entry{key: key, value: value} c.cache[key] = elem if c.head == nil { c.head = elem c.tail = elem } else { // 在链表头部插入新节点 elem.next = c.head c.head.prev = elem c.head = elem } // 判断缓存是否达到预设上限 if len(c.cache) > c.capacity { // 删除链表尾部节点和哈希表中的数据 delete(c.cache, c.tail.key) c.tail = c.tail.prev c.tail.next = nil } } }
首先,我们从哈希表中查找是否存在相应的数据,如果存在,则更新节点存储的值,并调用 moveToHead 方法将该节点移到链表的头部。否则,创建一个新的节点,并将该节点插入到链表的头部。如果缓存达到预设上限,则删除链表的尾部节点和哈希表中的数据。
最后,我们将完整的代码整合到一起:
type LRUCache struct { head, tail *entry cache map[int]*entry capacity int } type entry struct { key, value int prev, next *entry } func NewLRUCache(capacity int) *LRUCache { return &LRUCache{ cache: make(map[int]*entry), capacity: capacity, } } func (c *LRUCache) Get(key int) int { if elem, ok := c.cache[key]; ok { // 更新节点位置 c.moveToHead(elem) return elem.value } return -1 } func (c *LRUCache) moveToHead(elem *entry) { if elem == c.head { return } else if elem == c.tail { c.tail = elem.prev } else { elem.prev.next = elem.next elem.next.prev = elem.prev } elem.prev = nil elem.next = c.head c.head.prev = elem c.head = elem } func (c *LRUCache) Put(key, value int) { if elem, ok := c.cache[key]; ok { elem.value = value c.moveToHead(elem) } else { // 创建新节点 elem := &entry{key: key, value: value} c.cache[key] = elem if c.head == nil { c.head = elem c.tail = elem } else { // 在链表头部插入新节点 elem.next = c.head c.head.prev = elem c.head = elem } // 判断缓存是否达到预设上限 if len(c.cache) > c.capacity { // 删除链表尾部节点和哈希表中的数据 delete(c.cache, c.tail.key) c.tail = c.tail.prev c.tail.next = nil } } }
在本文中,我们已经介绍了如何使用双向链表和哈希表来实现 LRU 缓存算法。通过这种算法的实现,我们可以有效地管理缓存,优化数据的访问效率。
以上是golang lru实现的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本文解释了GO的软件包导入机制:命名imports(例如导入“ fmt”)和空白导入(例如导入_ fmt; fmt;)。 命名导入使包装内容可访问,而空白导入仅执行t

本文详细介绍了MySQL查询结果的有效转换为GO结构切片。 它强调使用数据库/SQL的扫描方法来最佳性能,避免手动解析。 使用DB标签和Robus的结构现场映射的最佳实践

本文解释了Beego的NewFlash()函数,用于Web应用程序中的页间数据传输。 它专注于使用newflash()在控制器之间显示临时消息(成功,错误,警告),并利用会话机制。 Lima

本文演示了创建模拟和存根进行单元测试。 它强调使用接口,提供模拟实现的示例,并讨论最佳实践,例如保持模拟集中并使用断言库。 文章

本文探讨了GO的仿制药自定义类型约束。 它详细介绍了界面如何定义通用功能的最低类型要求,从而改善了类型的安全性和代码可重复使用性。 本文还讨论了局限性和最佳实践

本文详细介绍了在GO中详细介绍有效的文件,将OS.WriteFile(适用于小文件)与OS.openfile和缓冲写入(最佳大型文件)进行比较。 它强调了使用延迟并检查特定错误的可靠错误处理。

本文使用跟踪工具探讨了GO应用程序执行流。 它讨论了手册和自动仪器技术,比较诸如Jaeger,Zipkin和Opentelemetry之类的工具,并突出显示有效的数据可视化
