北大、西湖大学等开源「裁判大模型」PandaLM:三行代码全自动评估LLM,准确率达ChatGPT的94%
ChatGPT发布后,自然语言处理领域的生态彻底发生了变化,很多之前无法完成的问题都可以利用ChatGPT解决。
不过也带来了一个问题:大模型的性能都太强了,光靠肉眼很难评估各个模型的差异。
比如用不同的基座模型和超参数训练了几版模型,从样例来看性能可能都差不多,无法完全量化两个模型之间的性能差距。
目前评估大语言模型主要有两个方案:
1、调用OpenAI的API接口评估。
ChatGPT可以用来评估两个模型输出的质量,不过ChatGPT一直在迭代升级,不同时间对同一个问题的回复可能会有所不同,评估结果存在无法复现的问题。
2、人工标注
如果在众包平台上请人工标注的话,经费不足的团队可能无力负担,也存在第三方公司泄露数据的情况。
为了解决诸如此类的「大模型评估问题」,来自北京大学、西湖大学、北卡罗来纳州立大学、卡内基梅隆大学、MSRA的研究人员合作开发了一个全新的语言模型评估框架PandaLM,致力于实现保护隐私、可靠、可复现及廉价的大模型评估方案。
项目链接:https://github.com/WeOpenML/PandaLM
提供相同的上下文,PandaLM可以比较不同LLM的响应输出,并提供具体的理由。
为了证明该工具的可靠性和一致性,研究人员创建了一个由大约1000个样本组成的多样化的人类标注测试数据集,其中PandaLM-7B的准确率达到了ChatGPT的94%评估能力。
三行代码用上PandaLM
当两个不同的大模型对同一个指令和上下文产生不同响应时,PandaLM旨在比较这两个大模型的响应质量,并输出比较结果,比较理由以及可供参考的响应。
比较结果有三种:响应1更好,响应2更好,响应1与响应2质量相似。
比较多个大模型的性能时,只需使用PandaLM对其进行两两比较,再汇总两两比较的结果进行多个大模型的性能排名或画出模型偏序关系图,即可清晰直观地分析不同模型间的性能差异。
PandaLM只需要在「本地部署」,且「不需要人类参与」,因此PandaLM的评估是可以保护隐私且相当廉价的。
为了提供更好的可解释性,PandaLM亦可用自然语言对其选择进行解释,并额外生成一组参考响应。
在项目中,研究人员不仅支持使用Web UI使用PandaLM以便于进行案例分析,为了方便使用,还支持三行代码调用PandaLM对任意模型和数据生成的文本评估。
考虑到现有的许多模型、框架并不开源或难以在本地完成推理,PandaLM支持利用指定模型权重生成待评估文本,或直接传入包含待评估文本的.json文件。
用户只需传入一个包含模型名称/HuggingFace模型ID或.json文件路径的列表,即可利用PandaLM对用户定义的模型和输入数据进行评估。下面是一个极简的使用示例:
为了能让大家灵活的运用PandaLM进行自由评测,研究人员也将PandaLM的模型权重公布在了huggingface网站上,可以通过以下命令加载PandaLM-7B模型:
PandaLM的特点
可复现性
因为PandaLM的权重是公开的,即使语言模型的输出有随机性,当固定随机种子之后,PandaLM的评价结果仍可始终保持一致。
而基于在线API的模型的更新不透明,其输出在不同时间有可能很不一致,且旧版模型不再可访问,因此基于在线API的评测往往不具有可复现性。
自动化、保护隐私性和开销低
只需本地部署PandaLM模型,调用现成的命令即可开始评估各种大模型,不需像雇佣专家标注时要时刻与专家保持沟通,也不会存在数据泄露的问题,同时也不涉及任何API费用以及劳务费用,非常廉价。
评估水平
为了证明PandaLM的可靠性,研究人员雇佣了三个专家进行独立重复标注,创建了一个人工标注的测试集。
测试集包含50个不同的场景,每个场景中又包含若干任务。这个测试集是多样化、可靠且与人类对文本的偏好相一致的。测试集的每个样本由一个指令和上下文,以及两个由不同大模型生成的响应共同组成,并由人类来比较这两个响应的质量。
筛除了标注员之间有较大差异的样本,以确保每个标注者在最终测试集上的IAA(Inter Annotator Agreement)接近0.85。值得注意的是,PandaLM的训练集与创建的人工标注测试集无任何重叠。
这些被过滤的样本需要额外的知识或难以获取的信息来辅助判断,这使得人类也难以对它们进行准确标注。
经过筛选的测试集包含1000个样本,而原始未经过滤的测试集包含2500个样本。测试集的分布为{0:105,1:422,2:472},其中0表示两个响应质量相似,1表示响应1更好,2表示响应2更好。以人类测试集为基准,PandaLM与gpt-3.5-turbo的性能对比如下:
可以看到,PandaLM-7B在准确度上已经达到了gpt-3.5-turbo 94%的水平,而在精确率,召回率,F1分数上,PandaLM-7B已于gpt-3.5-turbo相差无几。
因此,相比于gpt-3.5-turbo而言,可以认为PandaLM-7B已经具备了相当的大模型评估能力。
除了在测试集上的准确度,精确率,召回率,F1分数之外,还提供了5个大小相近且开源的大模型之间比较的结果。
首先使用了相同的训练数据对这个5个模型进行指令微调,接着用人类,gpt-3.5-turbo,PandaLM对这5个模型分别进行两两比较。
下表中第一行第一个元组(72,28,11)表示有72个LLaMA-7B的响应比Bloom-7B的好,有28个LLaMA-7B的响应比Bloom-7B的差,两个模型有11个响应质量相似。
因此在这个例子中,人类认为LLaMA-7B优于Bloom-7B。下面三张表的结果说明人类,gpt-3.5-turbo与PandaLM-7B对于各个模型之间优劣关系的判断完全一致。
总结
PandaLM提供了除人类评估与OpenAI API评估之外的第三条评估大模型的方案,PandaLM不仅评估水平高,而且评估结果可复现,评估流程自动化,保护隐私且开销低。
未来,PandaLM将推动学术界和工业界关于大模型的研究,使得更多人受益于大模型的发展。
以上是北大、西湖大学等开源「裁判大模型」PandaLM:三行代码全自动评估LLM,准确率达ChatGPT的94%的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP
