多元时序预测:独立预测 or 联合预测?
今天介绍一篇南大今年4月份发表的文章,主要探讨了多元时间序列预测问题中,独立预测(channel independent)和联合预测(channel dependent)二者效果的差异、背后的原因以及优化方法。
论文标题:The Capacity and Robustness Trade-off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting
下载地址:https://arxiv.org/pdf/2304.05206v1.pdf
1、独立预测和联合预测
多元时间序列预测问题中,从多变量建模方法的维度有两种类型,一种是独立预测(channel independent,CI),指的是把多元序列当成多个单变量预测,每个变量分别建模;另一种是联合预测(channel dependent,CD),指的是多变量一起建模,考虑各个变量之间的关系。二者的差异如下图。
这两种方式各有特点:CI方法只考虑单个变量,模型更简单,但是天花板也较低,因为没有考虑各个序列之间的关系,损失了一部分关键信息;而CD方法考虑的信息更全面,但是模型也更加复杂。
2、哪种方法更好
首先进行详细的对比实验,使用线性模型在多个数据集上观察CI方法和CD方法的效果,以确定哪种方法更好。在文中的实验中,一个主要的结论是CI方法在多数任务上表现出更优异的表现,并且效果稳定性更强。下面这张图中可以看到,CI的MAE、MSE等指标在各个数据集上基本都小于CD,同时效果的波动也更小一些。
从下面的实验结果可以看到,CI相比CD,在绝大多数预测窗口长度和数据集上,效果都是提升的。
为什么CI方法在实际应用中比CD效果更好、更稳定呢?文中进行了一些理论证明,核心的结论是:真实数据往往存在Distribution Drift,而使用CI方法有助于缓解这个问题,提升模型泛化性。下面这张图,展示了各个数据集trainset和testset的ACF(自相关系数,反映了未来序列和历史序列之间的关系)随时间变化分布,可以看到Distribution Drift在各个数据集上是广泛存在的(也就是trainset的ACF和testset的ACF不同,即两者的历史与未来序列的关系不同)。
文中通过理论证明了CI对于缓解因此Distribution Drift有效,CI和CD之间的选择,是一种模型容量和模型鲁棒性之间的权衡。尽管CD模型更复杂,但它对分布偏移也更具敏感性。这其实和模型容量与模型泛化性之间的关系类似,越复杂的模型,模型拟合的训练集样本越准确,但是泛化性较差,一旦训练集和测试集分布差异较大,效果就会变差。
3、如何优化
针对CD建模的问题,文中提出了一些优化方法,可以帮助CD模型更具鲁棒性。
正则化:引入一个正则化损失,用序列减去最近的样本点作为历史序列输入模型进行预测,同时使用平滑约束预测结果,让预测结果和最近邻的观测值偏差不要太大,使得预估结果更平;
低秩分解:将全连接参数矩阵分解成两个低阶矩阵,相当于减少了模型容量,缓解过拟合问题,提升模型鲁棒性;
损失函数:采用MAE替代MSE,降低模型对于异常值的敏感度;
历史输入序列长度:对于CD模型来说,输入的历史序列越长,可能反而会造成效果的下降,也是因为历序列越长,模型越容易受到Distribution Shift的影响,而对于CI模型,增长历史序列长度可以比较稳定的提升预测效果。
4、实验效果
文中将上面提到的改进CD模型的方法在多个数据集上进行实验,相比CD取得比较稳定的效果提升,说明上述方法对于提升多元序列预测鲁棒性有比较明显的作用。实验结果显示,低秩分解、历史窗口长度和损失函数类型等因素在影响效果方面也被列举在文中。
以上是多元时序预测:独立预测 or 联合预测?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Vibe编码通过让我们使用自然语言而不是无尽的代码行创建应用程序来重塑软件开发的世界。受Andrej Karpathy等有远见的人的启发,这种创新的方法使Dev

2025年2月,Generative AI又是一个改变游戏规则的月份,为我们带来了一些最令人期待的模型升级和开创性的新功能。从Xai的Grok 3和Anthropic的Claude 3.7十四行诗到Openai的G

Yolo(您只看一次)一直是领先的实时对象检测框架,每次迭代都在以前的版本上改善。最新版本Yolo V12引入了进步,可显着提高准确性

Chatgpt 4当前可用并广泛使用,与诸如ChatGpt 3.5(例如ChatGpt 3.5)相比,在理解上下文和产生连贯的响应方面取得了重大改进。未来的发展可能包括更多个性化的间

本文回顾了AI最高的艺术生成器,讨论了他们的功能,对创意项目的适用性和价值。它重点介绍了Midjourney是专业人士的最佳价值,并建议使用Dall-E 2进行高质量的可定制艺术。

Openai的O1:为期12天的礼物狂欢始于他们迄今为止最强大的模型 12月的到来带来了全球放缓,世界某些地区的雪花放缓,但Openai才刚刚开始。 山姆·奥特曼(Sam Altman)和他的团队正在推出12天的礼物前

Google DeepMind的Gencast:天气预报的革命性AI 天气预报经历了巨大的转变,从基本观察到复杂的AI驱动预测。 Google DeepMind的Gencast,开创性

本文讨论了AI模型超过Chatgpt,例如Lamda,Llama和Grok,突出了它们在准确性,理解和行业影响方面的优势。(159个字符)
