目录
Python中的@cache有什么妙用?
@cache缓存功能介绍
@cache的应用场景
补充:Python @cache装饰器
首页 后端开发 Python教程 Python中的@cache怎么使用

Python中的@cache怎么使用

May 23, 2023 am 11:50 AM
python

    Python中的@cache有什么妙用?

    通过采用缓存策略,可以将空间转化为时间,从而提升计算机系统性能。缓存在代码中的作用是优化代码的运行速度,尽管会增加内存占用。

    在Python的内置模块 functools 中,提供了高阶函数 cache() 用于实现缓存,用装饰器的方式使用: @cache。

    @cache缓存功能介绍

    在cache的源码中,对cache的描述是:Simple lightweight unbounded cache. Sometimes called “memoize”. 翻译成中文:简单的轻量级无限制缓存。有时也被称为“记忆化”。

    def cache(user_function, /):
        'Simple lightweight unbounded cache.  Sometimes called "memoize".'
        return lru_cache(maxsize=None)(user_function)
    登录后复制

    cache() 的代码只有一行,调用了 lru_cache() 函数,传入一个参数 maxsize=None。lru_cache() 也是 functools 模块中的函数,查看 lru_cache() 的源码,maxsize 的默认值是128,表示最大缓存128个数据,如果数据超过了128个,则按 LRU(最久未使用)算法删除多的数据。cache()将maxsize设置成None,则 LRU 特性被禁用且缓存数量可以无限增长,所以称为“unbounded cache”(无限制缓存)。

    lru_cache() 使用了 LRU(Least Recently Used)最久未使用算法,这也是函数名中有 lru 三个字母的原因。最久未使用算法的机制是,假设一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小, LRU算法选择将最近最少使用的数据淘汰,保留那些经常被使用的数据。

    cache() 是在Python3.9版本新增的,lru_cache() 是在Python3.2版本新增的, cache() 在 lru_cache() 的基础上取消了缓存数量的限制,其实跟技术进步、硬件性能的大幅提升有关,cache() 和 lru_cache() 只是同一个功能的不同版本。

    lru_cache() 本质上是一个为函数提供缓存功能的装饰器,缓存 maxsize 组传入参数,在下次以相同参数调用函数时直接返回上一次的结果,用以节约高开销或高I/O函数的调用时间。

    @cache的应用场景

    缓存的应用场景很广泛,如静态 Web 内容的缓存,可以直接在用户访问静态网页的函数上加 @cache 装饰器。

    一些递归的代码中,存在反复传入同一个参数执行函数代码的情况,使用缓存可以避免重复计算,降低代码的时间复杂度。

    接下来,我用斐波那契数列作为例子来说明 @cache 的作用,如果前面的内容你看完了还一知半解,相信看完例子你会茅塞顿开。

    斐波那契数列是指这样一个数列:1、1、2、3、5、8、13、21、34、… ,从第三个数开始,每个数都是前两个数之和。大多数初学者都曾经编写过斐波那契数列的代码,它的实现并不困难,在Python中,代码非常简洁。如下:

    def feibo(n):
        # 第0个数和第1个数为1
        a, b = 1, 1
        for _ in range(n):
            # 将b赋值给a,将a+b赋值给b,循环n次
            a, b = b, a+b
        return a
    登录后复制

    当然,斐波那契数列的代码实现方式有很多种(至少五六种),本文为了说明 @cache 的应用场景,用递归的方式来写斐波那契数列的代码。如下:

    def feibo_recur(n):
        if n < 0:
            return "n小于0无意义"
        # n为0或1时返回1(前两个数为1)
        if n == 0 or n == 1:
            return 1
        # 根据斐波那契数列的定义,其他情况递归返回前两个数之和
        return feibo_recur(n-1) + feibo_recur(n-2)
    登录后复制

    递归代码执行时会一直递归到feibo_recur(1)和feibo_recur(0),如下图所示(以求第6个数为例)。

    Python中的@cache怎么使用

    求F(5)时要先求F(4)和F(3),求F(4)时要先求F(3)和F(2),… 以此类推,递归的过程与二叉树深度优先遍历的过程类似。已知高度为 k 的二叉树最多可以有 2k-1 个节点,根据上面递归调用的图示,二叉树的高度是 n,节点最多为 2n-1, 也就是递归调用函数的次数最多为 2n-1 次,所以递归的时间复杂度为 O(2^n) 。

    时间复杂度为O(2^n)时,执行时间随 n 的增大变化非常夸张,下面实际测试一下。

    import time
    for i in [10, 20, 30, 40]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)
    登录后复制

    Output:

    第10个斐波那契数: 89
    n=10 Cost Time:  0.0
    第20个斐波那契数: 10946
    n=20 Cost Time:  0.0015988349914550781
    第30个斐波那契数: 1346269
    n=30 Cost Time:  0.17051291465759277
    第40个斐波那契数: 165580141
    n=40 Cost Time:  20.90010976791382

    从运行时间可以看出,在 n 很小时,运行很快,随着 n 的增大,运行时间极速上升,尤其 n 逐步增加到30和40时,运行时间变化得特别明显。为了更清晰地看出时间变化规律,再进一步进行测试。

    for i in [41, 42, 43]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)
    登录后复制

    Output:

    第41个斐波那契数: 267914296
    n=41 Cost Time:  33.77224683761597
    第42个斐波那契数: 433494437
    n=42 Cost Time:  55.86398696899414
    第43个斐波那契数: 701408733
    n=43 Cost Time:  92.55108690261841

    从上面的变化可以看到,时间是指数级增长的(大约按1.65的指数增长),这跟时间复杂度为 O(2^n) 相符。按照这个时间复杂度,假如要计算第50个斐波那契数列,差不多要等一个小时,非常不合理,也说明递归的实现方式运算量过大,存在明显的不足。如何解决这种不足,降低运算量呢?接下来看如何进行优化。

    根据前面的分析,递归代码运算量大,是因为递归执行时会不断的计算 feibo_recur(n-1) 和 feibo_recur(n-2),如示例图中,要得到 feibo_recur(5) ,feibo_recur(1) 调用了5次。随着 n 的增大,调用次数呈指数级增长,导致出现大量的重复操作,浪费了许多时间。

    Python中的@cache怎么使用

    假如有一个地方将每个 n 的执行结果记录下来,当作“备忘录”,下次函数再接收到这个相同的参数时,直接从备忘录中获取结果,而不用去执行递归的过程,就可以避免这些重复调用。在 Python 中,可以创建一个字典或列表来当作“备忘录”使用。

    temp = {}  # 创建一个空字典,用来记录第i个斐波那契数列的值
    def feibo_recur_temp(n):
        if n < 0:
            return "n小于0无意义"
        # n为0或1时返回1(前两个数为1)
        if n == 0 or n == 1:
            return 1
        if n in temp:  # 如果temp字典中有n,则直接返回值,不调用递归代码
            return temp[n]
        else:
            # 如果字典中还没有第n个斐波那契数,则递归计算并保存到字典中
            temp[n] = feibo_recur_temp(n-1) + feibo_recur_temp(n-2)
            return temp[n]
    登录后复制

    上面的代码中,创建了一个空字典用于存放每个 n 的执行结果。每次调用函数,都先查看字典中是否有记录,如果有记录就直接返回,没有记录就递归执行并将结果记录到字典中,再从字典中返回结果。这里的递归其实都只执行了一次计算,并没有真正的递归,如第一次传入 n 等于 5,执行 feibo_recur_temp(5),会递归执行 n 等于 4, 3, 2, 1, 0 的情况,每个 n 计算过一次后 temp 中都有了记录,后面都是直接到 temp 中取数相加。每个 n 都是从temp中取 n-1 和 n-2 的值来相加,执行一次计算,所以时间复杂度是 O(n) 。

    下面看一下代码的运行时间。

    for i in [10, 20, 30, 40, 41, 42, 43]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur_temp(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)
    print(temp)
    登录后复制

    Output:

    第10个斐波那契数: 89
    n=10 Cost Time: 0.0
    第20个斐波那契数: 10946
    n=20 Cost Time: 0.0
    第30个斐波那契数: 1346269
    n=30 Cost Time: 0.0
    第40个斐波那契数: 165580141
    n=40 Cost Time: 0.0
    第41个斐波那契数: 267914296
    n=41 Cost Time: 0.0
    第42个斐波那契数: 433494437
    n=42 Cost Time: 0.0
    第43个斐波那契数: 701408733
    n=43 Cost Time: 0.0
    {2: 2, 3: 3, 4: 5, 5: 8, 6: 13, 7: 21, 8: 34, 9: 55, 10: 89, 11: 144, 12: 233, 13: 377, 14: 610, 15: 987, 16: 1597, 17: 2584, 18: 4181, 19: 6765, 20: 10946, 21: 17711, 22: 28657, 23: 46368, 24: 75025, 25: 121393, 26: 196418, 27: 317811, 28: 514229, 29: 832040, 30: 1346269, 31: 2178309, 32: 3524578, 33: 5702887, 34: 9227465, 35: 14930352, 36: 24157817, 37: 39088169, 38: 63245986, 39: 102334155, 40: 165580141, 41: 267914296, 42: 433494437, 43: 701408733}

    可以观察到,代码的运行时间已经减少到小数点后很多位了(时间过短,只显示了0.0)。然而,temp 字典存储了每个数字的斐波那契数,这需要使用额外的内存空间,以换取更高的时间效率。

    上面的代码也可以用列表来当“备忘录”,代码如下。

    temp = [1, 1]
    def feibo_recur_temp(n):
        if n < 0:
            return "n小于0无意义"
        if n == 0 or n == 1:
            return 1
        if n < len(temp):
            return temp[n]
        else:
            # 第一次执行时,将结果保存到列表中,后续直接从列表中取
            temp.append(feibo_recur_temp(n-1) + feibo_recur_temp(n-2))
            return temp[n]
    登录后复制

    现在,已经剖析了递归代码重复执行带来的时间复杂度问题,也给出了优化时间复杂度的方法,让我们将注意力转回到本文介绍的 @cache 装饰器。@cache 装饰器的作用是将函数的执行结果缓存,在下次以相同参数调用函数时直接返回上一次的结果,与上面的优化方式完全一致。

    所以,只需要在递归函数上加 @cache 装饰器,递归的重复执行就可以解决,时间复杂度就能从 O(2^n) 降为 O(n) 。代码如下:

    from functools import cache
    @cache
    def feibo_recur(n):
        if n < 0:
            return "n小于0无意义"
        if n == 0 or n == 1:
            return 1
        return feibo_recur(n-1) + feibo_recur(n-2)
    登录后复制

    使用 @cache 装饰器,可以让代码更简洁优雅,并且让你专注于处理业务逻辑,而不需要自己实现缓存。下面看一下实际的运行时间。

    for i in [10, 20, 30, 40, 41, 42, 43]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)
    登录后复制

    Output:

    第10个斐波那契数: 89
    n=10 Cost Time: 0.0
    第20个斐波那契数: 10946
    n=20 Cost Time: 0.0
    第30个斐波那契数: 1346269
    n=30 Cost Time: 0.0
    第40个斐波那契数: 165580141
    n=40 Cost Time: 0.0
    第41个斐波那契数: 267914296
    n=41 Cost Time: 0.0
    第42个斐波那契数: 433494437
    n=42 Cost Time: 0.0
    第43个斐波那契数: 701408733
    n=43 Cost Time: 0.0

    完美地解决了问题,所有运行时间都被精确到了小数点后数位(即使只显示 0.0),非常巧妙。若今后遇到类似情形,可以直接采用 @cache 实现缓存功能,通过“记忆化”处理。

    补充:Python @cache装饰器

    @cache和@lru_cache(maxsize=None)可以用来寄存函数对已处理参数的结果,以便遇到相同参数可以直接给出答案。前者无限制存储数量,而后者通过设定maxsize限制存储数量的上限。

    例:

    @lru_cache(maxsize=None) # 等价于@cache
    def test(a,b):
        print(&#39;开始计算a+b的值...&#39;)
        return a + b
    登录后复制

    可以用来做某些递归、动态规划。比如斐波那契数列的各项值从小到大输出。其实类似用数组保存前项的结果,都需要额外的空间。不过用装饰器可以省略额外空间代码,减少了出错的风险。

    以上是Python中的@cache怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

    本站声明
    本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    AI Hentai Generator

    AI Hentai Generator

    免费生成ai无尽的。

    热工具

    记事本++7.3.1

    记事本++7.3.1

    好用且免费的代码编辑器

    SublimeText3汉化版

    SublimeText3汉化版

    中文版,非常好用

    禅工作室 13.0.1

    禅工作室 13.0.1

    功能强大的PHP集成开发环境

    Dreamweaver CS6

    Dreamweaver CS6

    视觉化网页开发工具

    SublimeText3 Mac版

    SublimeText3 Mac版

    神级代码编辑软件(SublimeText3)

    PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

    PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

    Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

    Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

    vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

    在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

    visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

    VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

    vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

    VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

    vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

    VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

    Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

    Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

    vscode是什么 vscode是干什么用的 vscode是什么 vscode是干什么用的 Apr 15, 2025 pm 06:45 PM

    VS Code 全称 Visual Studio Code,是一个由微软开发的免费开源跨平台代码编辑器和开发环境。它支持广泛的编程语言,提供语法高亮、代码自动补全、代码片段和智能提示等功能以提高开发效率。通过丰富的扩展生态系统,用户可以针对特定需求和语言添加扩展程序,例如调试器、代码格式化工具和 Git 集成。VS Code 还包含直观的调试器,有助于快速查找和解决代码中的 bug。

    See all articles