目录
01 摄像头标定" >01 摄像头标定
1.摄像头内参数标定" >1.摄像头内参数标定
2.摄像头间外参的标定" >2.摄像头间外参的标定
02 激光雷达的标定
1.激光雷达和激光雷达之间的标定" >1.激光雷达和激光雷达之间的标定
2.激光雷达与摄像机的标定" >2.激光雷达与摄像机的标定
首页 科技周边 人工智能 智能汽车车载传感器标定技术深度解读

智能汽车车载传感器标定技术深度解读

May 25, 2023 pm 12:01 PM
自动驾驶 传感器

标定传感器是自动驾驶感知系统中的必要环节,是后续传感器融合的必要步骤和先决条件,其目的是将两个或者多个传感器变换到统一的时空坐标系,使得传感器融合具有意义,是感知决策的关键前提。任何传感器在制造、安装之后都需要通过实验进行标定,以保证传感器符合设计指标,保证测量值的准确性。

传感器在安装到自动驾驶汽车上之后,需要对其进行标定;同时,在车辆行驶过程中,由于震动等原因,会导致传感器位置与原位置产生偏离,因此有必要每隔一定的时间对传感器进行校准。自动驾驶汽车通过多种类型的传感器同时工作以进行环境感知与自感知,传感器的健壮性和准确性在自动驾驶汽车感知环节中尤为重要。

01 摄像头标定

车载摄像头以一定的角度和位置安装在车辆上,为了将车载摄像头采集到的环境数据与车辆行驶环境中的真实物体相对应,即找到车载摄像头所生成的图像像素坐标系中的点坐标与摄像机环境坐标系中的点坐标之间的转换关系,需要进行摄像头标定。

1.摄像头内参数标定

1.1摄像头模型的建立

通过环境坐标系、摄像头坐标系、图像物理坐标系、图像像素坐标系的相互转换关系,我们可以求出环境坐标系与图像像素坐标系之间的转换关系,即

对现实世界的的点P。其在环境坐标系下的坐标为( Xw, Yw, Zw ),在图像中的位置为(u,v),两者有如下的关系:

智能汽车车载传感器标定技术深度解读

环境坐标系与图像像素坐标系之间的转换关系

对内参矩阵,其四个常量fx,fy,Uo,Vo。与摄像机的焦距、主点以及传感器等设计技术指标有关,而与外部因素(如周边环境、摄像机位置)无关,因此称为摄像头的内参。内参在摄像头出厂时就是确定的。然而由于制作工艺等问题,即使是同一生产线生产的摄像头,内参都有着些许差别,因此往往需要通过实验的方式来确定摄像头的内参。对单目摄像头的标定,通常就是指通过实验手段确定摄像头的内参。

外参矩阵包括旋转矩阵和平移矩阵,旋转矩阵和平移矩阵共同描述了如何把点从世界坐标系转换到摄像机坐标系。在计算机视觉中,确定外参矩阵的过程通常称为视觉定位。自动驾驶汽车在车载摄像头安装之后,需要标定在车辆坐标系下的摄像头位置。此外,由于汽车行驶的颠簸和震动,车载摄像头的位置会随着时间进行缓慢的变化,因此自动驾驶汽车需要定期对摄像头位置进行重新标定,这一过程称为校准。

1.2 摄像头畸变矫正

在实际使用中,摄像头并不能完全精确地按照理想的针孔摄像机模型进行透视投影,通常会存在透镜畸变,即物点在实际的摄像头成像平面上生成的像与理想成像之间存在一定光学畸变误差,其畸变误差主要是径向畸变误差和切向畸变误差。

径向畸变(radial distortion):由于透镜的特性,光线容易在相机镜头的边缘出现较小或者较大幅度的弯曲,称之为径向畸变。这种畸变在普通廉价的镜头中表现更加明显,径向畸变主要包括桶形畸变和枕形畸变两种。桶形畸变则是由于镜头中透镜物以及镜片组结构引起的成像画面呈桶形膨胀状的失真现象。通常在使用广角镜头或使用变焦镜头的广角端时,较容易察觉桶形失真现象。枕形畸变是由镜头引起的画面向中间“收缩”的现象。人们在使用长焦镜头变焦镜头的长焦端时,较容易察觉枕形失真现象。

  • 切向畸变(tangential distortion):是由于透镜本身与相机传感器平面(成像平面)或图像平面不平行而产生的,这种情况多是由于透镜被粘贴到镜头模组上的安装偏差导致。

在计算机视觉中,径向畸变对场景重建有着非常重要的影响。自动驾驶系统对环境的感知,要求摄像头能够实现对周边环境的高精确度重建,如果不对畸变加以矫正,就无法到精确的环境信息。例如,环境中的目标可能出现在图像的任何区域,如果不对畸变加以正,那么通过视觉技术得到的目标位置和大小往往是不准确的,这会直接影响自动驾驶汽车的行驶安全。此外,自动驾驶汽车安装有多个摄像头,且在不同位置,若不考虑径向畸变,在图像拼接过程中,就会因对应特征的误匹配从而导致拼接图像的模糊效应。

对一般的摄像头来讲,图像的径向畸变往往描述为一个低阶多项式模型。设(u,v)是纠正后的点的坐标,(u',u')是未纠正的点的坐标,则二者之间的变换可以通过以下公式确定:

智能汽车车载传感器标定技术深度解读

径向畸变低阶多项式模型

另一方面,对于切向畸变,可以使用另外的两个参数p1,p2来进行纠正:

智能汽车车载传感器标定技术深度解读

切向畸变低阶多项式模型

1.3摄像头内参标定方法

在现阶段,畸变参数的标定一般与其余内参同时进行。目前应用最广泛的是张正友于2000年提出的张正友标定法。张正友标定法通过在不同位置拍摄棋盘标定板的方式,在每个图像中找到棋盘标定板的内角点,通过内角点之间的对应关系建立对矩阵智能汽车车载传感器标定技术深度解读的约束,从而恢复内参矩阵K。

2.摄像头间外参的标定

自动驾驶汽车中,为了尽可能减少感知盲区,往往采用多摄像头的模式。确定多摄像头之间的相对位置关系,这个过程称为摄像机的外参标定。

从另一个角度来说,摄像机的外参标定也可以称为“姿态估计”问题。两个摄像头之间相对位姿[R|t]有6个自由度(空间位置与旋转关系),从理论上来讲,只要两个摄像头同时获取空间中3个点即可恢复二者之间的相对姿态。从三对对应点恢复摄像头之间的相对姿态的问题,称为“透视三点问题”(Perspective-3-Point-Problem,P3P)。在现实中,常常使用3个以上的点来恢复相对姿态,以提高鲁棒性,P3P问题被推广为PnP问题。

最初研究者使用直接线性法(Direct Linear Transform,DLT)解决PnP问题,之后为了提升精度,研究者们提出了鲁棒线性化的重投影误差,开始采用选代的方法来求解PnP问题,并由此提出了姿态估计中著名的光束平差法(Bundle Adjustment,BA)。

02 激光雷达的标定

激光雷达自动驾驶平台的主要传感器之一,在感知、定位方面发挥着重要作用。同摄像头一样,激光雷达在使用之前也需要对其内外参数进行标定。内参标定指的是其内部激光发射器坐标系与雷达自身坐标系的转换关系,在出厂之前已经标定完成,可以直接使用。自动驾驶系统需要进行的是外参标定,即激光雷达自身坐标系与车体坐标系的关系。

激光雷达与车体为刚性连接,两者间的相对姿态和位移固定不变。为了建立激光雷达之间以及激光雷达与车辆之间的相对坐标关系,需要对激光雷达的安装进行标定,并使激光雷达数据从激光雷达坐标系转换至车体坐标系上。

智能汽车车载传感器标定技术深度解读

车体坐标系与激光雷达坐标系

智能汽车车载传感器标定技术深度解读

通过实验采集同一个点在两个坐标系下的真实坐标,即同名点,建立一系列的方程可以求出这16个未知参数。另外,在自动驾驶汽车上,通常需要将激光雷达与惯性导航单元(IMU)坐标系进行标定,建立激光雷达与车体坐标系之间的关系。

1.激光雷达和激光雷达之间的标定

对自动驾驶汽车来说,有时会存在多个激光雷达的情况,每一个激光雷达获取的外部境都必须准确地映射到车体坐标系下。因此,当存在多个激光雷达时,需要对多个激光雷的相对位置进行标定和校准。

激光雷达之间的外参标定有多种思路,其中较为常用的是通过不同激光雷达与车体之间的坐标转换关系来间接推导出激光雷达之间的坐标转换关系。

2.激光雷达与摄像机的标定

在自动驾驶车辆上,激光雷达与无人驾驶汽车为刚性连接,两者间的相对姿态和位移固定不变,因此,激光雷达扫描获得的数据点,在环境坐标系中有唯一的位置坐标与之对应。同样,摄像机在环境坐标系中也有唯一的位置坐标,因此,激光雷达与摄像机之间存在着固定的坐标转换。激光雷达与摄像机的联合标定,就是通过提取标定物在单线激光雷达和图像上的对应特征点,完成单线激光雷达坐标、摄像机坐标、图像像素坐标等多个传感器坐标的统一,实现激光雷达与摄像机的空间校准。

当完成摄像机外参标定、激光雷达外参标定之后,二者之间的关系其实就可以完全确定,激光雷达扫描点可投影到图像像素坐标系。

同相机的内参标定方法一样,激光雷达与摄像机的外参标定也可以使用标定板的标定方法。

以上是智能汽车车载传感器标定技术深度解读的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF? 为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF? Jan 17, 2024 pm 02:57 PM

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

Wow Awesome!三星 Galaxy Ring 体验:2999 元的真 · 智能戒指 Wow Awesome!三星 Galaxy Ring 体验:2999 元的真 · 智能戒指 Jul 19, 2024 pm 02:31 PM

三星在7月17日正式发布了国行版的三星GalaxyRing,定价2999元。GalaxyRing的真机,真就是2024版的"WowAwesome,这是我独享的moment"。它是近几年除苹果VisionPro之外,让我们感觉最新鲜的电子产品(虽然听起来像是在立flag)。(图中,左右两边的戒指,就是GalaxyRing↑)三星GalaxyRing规格(国行官网数据):ZephyrRTOS系统,8MB存储;10ATM防水+IP68;电池容量18mAh到23.5mAh(不同尺码的

自动驾驶场景中的长尾问题怎么解决? 自动驾驶场景中的长尾问题怎么解决? Jun 02, 2024 pm 02:44 PM

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

升级全面屏!iPhone SE4 提前至 9 月 升级全面屏!iPhone SE4 提前至 9 月 Jul 24, 2024 pm 12:56 PM

最近微博上爆料了关于iPhoneSE4的新消息,消息称iPhoneSE4的后盖工艺和iPhone16标准版完全一样,也就是说,iPhoneSE4会采用玻璃背板,并搭配直屏直边的设计。消息称iPhoneSE4将会提前至今年9月发布,也就是很有可能会和iPhone16同时亮相。1.根据曝光的渲染图可见,iPhoneSE4正面设计与iPhone13相近,刘海屏上设置有前置摄像头和FaceID传感器。背面采用类似iPhoneXr的布局,但仅配置一颗摄像头,并未设有整体摄像模组。

选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述 选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述 Jan 26, 2024 am 11:18 AM

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

手机1英寸传感器到底有多大 其实比相机的1英寸还大 手机1英寸传感器到底有多大 其实比相机的1英寸还大 May 08, 2024 pm 06:40 PM

昨天的文章里没提“传感器尺寸”,没想到大家原来有这么多误解……1英寸到底是多少?因为一些历史遗留问题*,无论是相机还是手机,传感器对角线长度中的“1英寸”都不是25.4mm。*涉及到真空管,这里不做展开,有点类似马屁股决定铁轨宽度。为了避免误读,更严谨的写法是“1.0型”或者“Type1.0”。并且,当传感器尺寸小于1/2型时,1型=18mm;而在传感器尺寸大于等于1/2型时,1型=

自动驾驶与轨迹预测看这一篇就够了! 自动驾驶与轨迹预测看这一篇就够了! Feb 28, 2024 pm 07:20 PM

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

SIMPL:用于自动驾驶的简单高效的多智能体运动预测基准 SIMPL:用于自动驾驶的简单高效的多智能体运动预测基准 Feb 20, 2024 am 11:48 AM

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

See all articles