图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次
2017 年,谷歌大脑团队在其论文《Attention Is All You Need》中创造性的提出 Transformer 这一架构,自此这一研究一路开挂,成为当今 NLP 领域最受欢迎的模型之一,被广泛应用于各种语言任务,并取得了许多 SOTA 结果。
不仅如此,在 NLP 领域一路领先的 Transformer,迅速席卷计算机视觉(CV)、语音识别等领域,在图像分类、目标检测、语音识别等任务上取得良好的效果。
论文地址:https://arxiv.org/pdf/1706.03762.pdf
从推出至今,Transformer 已经成为众多模型的核心模块,比如大家熟悉的 BERT、T5 等都有 Transformer 的身影。就连近段时间爆火的 ChatGPT 也依赖 Transformer,而后者早已被谷歌申请了专利。
图源:https://patentimages.storage.googleapis.com/05/e8/f1/cd8eed389b7687/US10452978.pdf
此外 OpenAI 发布的系列模型 GPT(Generative Pre-trained Transformer),名字中带有 Transformer,可见 Transformer 是 GPT 系列模型的核心。
与此同时,最近 OpenAI 联合创始人 Ilya Stutskever 在谈到 Transformer 时表示,当 Transformer 刚发布之初,实际上是论文放出来的第二天,他们就迫不及待的将以前的研究切换到 Transformer ,后续才有了 GPT。可见 Transformer 的重要性不言而喻。
6 年时间,基于 Transformer 构建的模型不断发展壮大。然而现在,有人发现了 Transformer 原始论文中的一处错误。
Transformer 架构图与代码「不一致」
发现错误的是一位知名机器学习与 AI 研究者、初创公司 Lightning AI 的首席 AI 教育家 Sebastian Raschka。他指出,原始 Transformer 论文中的架构图有误,将层归一化(LN)放置在了残差块之间,而这与代码不一致。
Transformer 架构图如下左,图右为 Post-LN Transformer 层(出自论文《On Layer Normalization in the Transformer Architecture》[1])。
不一致的代码部分如下,其中 82 行写了执行顺序「layer_postprocess_sequence="dan"」,表示后处理依次执行 dropout、residual_add 和 layer_norm。如果上图左中的 add&norm 理解为:add 在 norm 上面,即先 norm 再 add,那确实代码和图不一致。
代码地址:
https://github.com/tensorflow/tensor2tensor/commit/f5c9b17e617ea9179b7d84d36b1e8162cb369f25#diff-76e2b94ef16871bdbf46bf04dfe7f1477bafb884748f08197c9cf1b10a4dd78e…
接下来,Sebastian 又表示,论文《On Layer Normalization in the Transformer Architecture》认为 Pre-LN 表现更好,能够解决梯度问题。这是很多或者大多数架构在实践中所采用的,但它可能导致表示崩溃。
当层归一化在注意力和全连接层之前被放置于残差连接之中时,能够实现更好的梯度。
因此,虽然关于 Post-LN 或 Pre-LN 的争论仍在继续,但另一篇论文结合了这两点,即《ResiDual: Transformer with Dual Residual Connections》[2]。
对于 Sebastian 的这一发现,有人认为,我们经常会遇到与代码或结果不一致的论文。大多数是无心之过,但有时令人感到奇怪。考虑到 Transformer 论文的流行程度,这个不一致问题早就应该被提及 1000 次。
Sebastian 回答称,公平地讲,「最最原始」的代码确实与架构图一致,但 2017 年提交的代码版本进行了修改,同时没有更新架构图。所以,这实在令人困惑。
正如一位网友所说,「读代码最糟糕的是,你会经常发现这样的小变化,而你不知道是有意还是无意。你甚至无法测试它,因为你没有足够的算力来训练模型。」
不知谷歌之后会更新代码还是架构图,我们拭目以待!
以上是图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

CentOS 关机命令为 shutdown,语法为 shutdown [选项] 时间 [信息]。选项包括:-h 立即停止系统;-P 关机后关电源;-r 重新启动;-t 等待时间。时间可指定为立即 (now)、分钟数 ( minutes) 或特定时间 (hh:mm)。可添加信息在系统消息中显示。

SonyInteractiveEntertainment(SIE,索尼互动娱乐)首席架构师MarkCerny公开更多次世代主机PlayStation5Pro(PS5Pro)硬体细节,包括性能升级的AMDRDNA2.x架构GPU,以及与AMD合作代号「Amethyst」的机器学习/人工智慧计划。 PS5Pro性能提升的重点仍集中在更强大的GPU、先进的光线追踪与AI驱动的PSSR超解析度功能等3大支柱上。 GPU采用客制化的AMDRDNA2架构,索尼将其命名为RDNA2.x,它拥有部分RDNA3架构才

CentOS系统下GitLab的备份与恢复策略为了保障数据安全和可恢复性,CentOS上的GitLab提供了多种备份方法。本文将详细介绍几种常见的备份方法、配置参数以及恢复流程,帮助您建立完善的GitLab备份与恢复策略。一、手动备份利用gitlab-rakegitlab:backup:create命令即可执行手动备份。此命令会备份GitLab仓库、数据库、用户、用户组、密钥和权限等关键信息。默认备份文件存储于/var/opt/gitlab/backups目录,您可通过修改/etc/gitlab

检查CentOS系统中HDFS配置的完整指南本文将指导您如何有效地检查CentOS系统上HDFS的配置和运行状态。以下步骤将帮助您全面了解HDFS的设置和运行情况。验证Hadoop环境变量:首先,确认Hadoop环境变量已正确设置。在终端执行以下命令,验证Hadoop是否已正确安装并配置:hadoopversion检查HDFS配置文件:HDFS的核心配置文件位于/etc/hadoop/conf/目录下,其中core-site.xml和hdfs-site.xml至关重要。使用

在CentOS上对Zookeeper进行性能调优,可以从多个方面入手,包括硬件配置、操作系统优化、配置参数调整以及监控与维护等。以下是一些具体的调优方法:硬件配置建议使用SSD硬盘:由于Zookeeper的数据写入磁盘,强烈建议使用SSD以提高I/O性能。足够的内存:为Zookeeper分配足够的内存资源,避免频繁的磁盘读写。多核CPU:使用多核CPU,确保Zookeeper可以并行处理请

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

微软针对Windows搜索功能的改进,目前已在欧盟地区部分WindowsInsider频道展开测试。此前,整合后的Windows搜索功能饱受用户诟病,体验欠佳。此次更新将搜索功能拆分为本地搜索和基于Bing的网络搜索两部分,以提升用户体验。新版搜索界面默认进行本地文件搜索,如需进行网络搜索,需点击“MicrosoftBingWebSearch”标签进行切换。切换后,搜索栏将显示“MicrosoftBingWebSearch:”,用户可在此输入关键词。此举有效避免了本地搜索结果与Bing搜索结果混
