目录
正文
分布式锁
运行测试
分布式过滤器
分布式限流器
其他
首页 数据库 Redis Golang分布式应用之Redis怎么使用

Golang分布式应用之Redis怎么使用

May 26, 2023 pm 10:07 PM
redis golang

    正文

    Redis作是一个高性能的内存数据库,常被应用于分布式系统中,除了作为分布式缓存或简单的内存数据库还有一些特殊的应用场景,本文结合Golang来编写对应的中间件。

    分布式锁

    单机系统中我们可以使用sync.Mutex来保护临界资源,在分布式系统中同样有这样的需求,当多个主机抢占同一个资源,需要加对应的“分布式锁”。

    在Redis中我们可以通过setnx命令来实现

    • 如果key不存在可以设置对应的值,设置成功则加锁成功,key不存在返回失败

    • 释放锁可以通过del实现。

    主要逻辑如下:

    type RedisLock struct {
    	client     *redis.Client
    	key        string
    	expiration time.Duration // 过期时间,防止宕机或者异常
    }
    func NewLock(client *redis.Client, key string, expiration time.Duration) *RedisLock {
    	return &RedisLock{
    		client:     client,
    		key:        key,
    		expiration: expiration,
    	}
    }
    // 加锁将成功会将调用者id保存到redis中
    func (l *RedisLock) Lock(id string) (bool, error) {
    	return l.client.SetNX(context.TODO(), l.key, id, l.expiration).Result()
    }
    const unLockScript = `
    if (redis.call("get", KEYS[1]) == KEYS[2]) then
    	redis.call("del", KEYS[1])
    	return true
    end
    return false
    `
    // 解锁通过lua脚本来保证原子性,只能解锁当前调用者加的锁
    func (l *RedisLock) UnLock(id string) error {
    	_, err := l.client.Eval(context.TODO(), unLockScript, []string{l.key, id}).Result()
    	if err != nil && err != redis.Nil {
    		return err
    	}
    	return nil
    }
    登录后复制

    为了防止系统宕机或异常请求导致的死锁,需要添加一个额外的超时时间,该超时时间应设为最大估计运行时间的两倍。

    解锁时通过lua脚本来保证原子性,调用者只会解自己加的锁。避免由于超时造成的混乱,例如:进程A在时间t1获取了锁,但由于执行缓慢,在时间t2锁超时失效,进程B在t3获取了锁,这是如果进程A执行完去解锁会取消进程B的锁。

    运行测试

    func main() {
        client := redis.NewClient(&redis.Options{
    		Addr:     "localhost:6379",
    		Password: "123456",
    		DB:       0, // use default DB
    	})
    	lock := NewLock(client, "counter", 30*time.Second)
        counter := 0
    	worker := func(i int) {
    		for {
    			id := fmt.Sprintf("worker%d", i)
    			ok, err := lock.Lock(id)
    			log.Printf("worker %d attempt to obtain lock, ok: %v, err: %v", i, ok, err)
    			if !ok {
    				time.Sleep(100 * time.Millisecond)
    				continue
    			}
    			defer lock.UnLock(id)
    			counter++
    			log.Printf("worker %d, add counter %d", i, counter)
    			break
    		}
    	}
    	wg := sync.WaitGroup{}
    	for i := 1; i <= 5; i++ {
    		wg.Add(1)
    		id := i
    		go func() {
    			defer wg.Done()
    			worker(id)
    		}()
    	}
    	wg.Wait()
    }
    登录后复制

    运行结果,可以看到与sync.Mutex使用效果类似

    2022/07/22 09:58:09 worker 5 attempt to obtain lock, ok: true, err:
    2022/07/22 09:58:09 worker 5, add counter 1
    2022/07/22 09:58:09 worker 4 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:09 worker 1 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:09 worker 2 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:09 worker 3 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 1 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 2 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 4 attempt to obtain lock, ok: true, err:
    2022/07/22 09:58:10 worker 4, add counter 2
    2022/07/22 09:58:10 worker 1 attempt to obtain lock, ok: true, err:
    2022/07/22 09:58:10 worker 1, add counter 3
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 2 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 2 attempt to obtain lock, ok: true, err:
    2022/07/22 09:58:10 worker 2, add counter 4
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: false, err:
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: true, err:
    2022/07/22 09:58:10 worker 3, add counter 5

    特别注意的是,在分布式Redis集群中,如果发生异常时(主节点宕机),可能会降低分布式锁的可用性,可以通过强一致性的组件etcd、ZooKeeper等实现。

    分布式过滤器

    假设要开发一个爬虫服务,爬取百万级的网页,怎么判断某一个网页是否爬取过,除了借助数据库和HashMap,我们可以借助布隆过滤器来做。相对于其他方法,布隆过滤器占用空间非常少,且插入和查询时间非常快。

    布隆过滤器用来判断某个元素是否在集合中,利用BitSet

    • 插入数据时将值进行多次Hash,将BitSet对应位置1

    • 查询时同样进行多次Hash对比所有位上是否为1,如是则存在。

    布隆过滤器有一定的误判率,不适合精确查询的场景。另外也不支持删除元素。通常适用于URL去重、垃圾邮件过滤、防止缓存击穿等场景中。

    在Redis中,我们可以使用自带的BitSet实现,同样也借助lua脚本的原子性来避免多次查询数据不一致。

    const (
    	// 插入数据,调用setbit设置对应位
    	setScript = `
    for _, offset in ipairs(ARGV) do
    	redis.call("setbit", KEYS[1], offset, 1)
    end
    `
    	// 查询数据,如果所有位都为1返回true
    	getScript = `
    for _, offset in ipairs(ARGV) do
    	if tonumber(redis.call("getbit", KEYS[1], offset)) == 0 then
    		return false
    	end
    end
    return true
    `
    )
    type BloomFilter struct {
    	client *redis.Client
    	key    string // 存在redis中的key
    	bits   uint // BitSet的大小
    	maps   uint // Hash的次数
    }
    func NewBloomFilter(client *redis.Client, key string, bits, maps uint) *BloomFilter {
    	client.Del(context.TODO(), key)
    	if maps == 0 {
    		maps = 14
    	}
    	return &BloomFilter{
    		key:    key,
    		client: client,
    		bits:   bits,
    		maps:   maps,
    	}
    }
    // 进行多次Hash, 得到位置列表
    func (f *BloomFilter) getLocations(data []byte) []uint {
    	locations := make([]uint, f.maps)
    	for i := 0; i < int(f.maps); i++ {
    		val := murmur3.Sum64(append(data, byte(i)))
    		locations[i] = uint(val) % f.bits
    	}
    	return locations
    }
    func (f *BloomFilter) Add(data []byte) error {
    	args := getArgs(f.getLocations(data))
    	_, err := f.client.Eval(context.TODO(), setScript, []string{f.key}, args).Result()
    	if err != nil && err != redis.Nil {
    		return err
    	}
    	return nil
    }
    func (f *BloomFilter) Exists(data []byte) (bool, error) {
    	args := getArgs(f.getLocations(data))
    	resp, err := f.client.Eval(context.TODO(), getScript, []string{f.key}, args).Result()
    	if err != nil {
    		if err == redis.Nil {
    			return false, nil
    		}
    		return false, err
    	}
    	exists, ok := resp.(int64)
    	if !ok {
    		return false, nil
    	}
    	return exists == 1, nil
    }
    func getArgs(locations []uint) []string {
    	args := make([]string, 0)
    	for _, l := range locations {
    		args = append(args, strconv.FormatUint(uint64(l), 10))
    	}
    	return args
    }
    登录后复制

    运行测试

    func main() {
    	bf := NewBloomFilter(client,"bf-test", 2^16, 14)
    	exists, err := bf.Exists([]byte("test1"))
    	log.Printf("exist %t, err %v", exists, err)
    	if err := bf.Add([]byte("test1")); err != nil {
    		log.Printf("add err: %v", err)
    	}
    	exists, err = bf.Exists([]byte("test1"))
    	log.Printf("exist %t, err %v", exists, err)
    	exists, err = bf.Exists([]byte("test2"))
    	log.Printf("exist %t, err %v", exists, err)
    // output
    // 2022/07/22 10:05:58 exist false, err <nil>
    // 2022/07/22 10:05:58 exist true, err <nil>
    // 2022/07/22 10:05:58 exist false, err <nil>
    }
    登录后复制

    分布式限流器

    golang.org/x/time/rate包中提供了基于令牌桶的限流器,如果要实现分布式环境的限流可以基于Redis Lua脚本实现。

    令牌桶的主要原理如下:

    • 假设一个令牌桶容量为burst,每秒按照qps的速率往里面放置令牌

    • 初始时放满令牌,令牌溢出则直接丢弃,请求令牌时,如果桶中有足够令牌则允许,否则拒绝

    • 当burst==qps时,严格按照qps限流;当burst>qps时,可以允许一定的突增流量

    这里主要参考了官方rate包的实现,将核心逻辑改为Lua实现。

    --- 相关Key
    --- limit rate key值,对应value为当前令牌数
    local limit_key = KEYS[1]
    --- 输入参数
    --[[
    qps: 每秒请求数;
    burst: 令牌桶容量;
    now: 当前Timestamp;
    cost: 请求令牌数;
    max_wait: 最大等待时间
    --]]
    local qps = tonumber(ARGV[1])
    local burst = tonumber(ARGV[2])
    local now = ARGV[3]
    local cost = tonumber(ARGV[4])
    local max_wait = tonumber(ARGV[5])
    --- 获取redis中的令牌数
    local tokens = redis.call("hget", limit_key, "token")
    if not tokens then
    	tokens = burst
    end
    --- 上次修改时间
    local last_time = redis.call("hget", limit_key, "last_time")
    if not last_time then
    	last_time = 0
    end
    --- 最新等待时间
    local last_event = redis.call("hget", limit_key, "last_event")
    if not last_event then
    	last_event = 0
    end
    --- 通过当前时间与上次修改时间的差值,qps计算出当前时间得令牌数
    local delta = math.max(0, now-last_time)
    local new_tokens = math.min(burst, delta * qps + tokens)
    new_tokens = new_tokens - cost --- 最新令牌数,减少请求令牌
    --- 如果最新令牌数小于0,计算需要等待的时间
    local wait_period = 0
    if new_tokens < 0 and qps > 0 then
    	wait_period = wait_period - new_tokens / qps
    end
    wait_period = math.ceil(wait_period)
    local time_act = now + wait_period --- 满足等待间隔的时间戳
    --- 允许请求有两种情况
    --- 当请求令牌数小于burst, 等待时间不超过最大等待时间,可以通过补充令牌满足请求
    --- qps为0时,只要最新令牌数不小于0即可
    local ok = (cost <= burst and wait_period <= max_wait and qps > 0) or (qps == 0 and new_tokens >= 0)
    --- 设置对应值
    if ok then
    	redis.call("set", limit_key, new_tokens)
    	redis.call("set", last_time_key, now)
    	redis.call("set", last_event_key, time_act)
    end
    --- 返回列表,{是否允许, 等待时间}
    return {ok, wait_period}
    登录后复制

    在Golang中的相关接口Allow、AllowN、Wait等都是通过调用reserveN实现

    // 调用lua脚本
    func (lim *RedisLimiter) reserveN(now time.Time, n int, maxFutureReserveSecond int) (*Reservation, error) {
    	// ...
    	res, err := lim.rdb.Eval(context.TODO(), reserveNScript, []string{lim.limitKey}, lim.qps, lim.burst, now.Unix(), n, maxFutureReserveSecond).Result()
    	if err != nil && err != redis.Nil {
    		return nil, err
    	}
    	//...
    	return &Reservation{
    		ok:        allow == 1,
    		lim:       lim,
    		tokens:    n,
    		timeToAct: now.Add(time.Duration(wait) * time.Second),
    	}, nil
    }
    登录后复制

    运行测试

    func main() {
    	rdb := redis.NewClient(&redis.Options{
    		Addr:     "localhost:6379",
    		Password: "123456",
    		DB:       0, // use default DB
    	})
    	r, err := NewRedisLimiter(rdb, 1, 2, "testrate")
    	if err != nil {
    		log.Fatal(err)
    	}
    	r.Reset()
    	for i := 0; i < 5; i++ {
    		err := r.Wait(context.TODO())
    		log.Printf("worker %d allowed: %v", i, err)
    	}
    }
    // output
    // 2022/07/22 12:50:31 worker 0 allowed: <nil>
    // 2022/07/22 12:50:31 worker 1 allowed: <nil>
    // 2022/07/22 12:50:32 worker 2 allowed: <nil>
    // 2022/07/22 12:50:33 worker 3 allowed: <nil>
    // 2022/07/22 12:50:34 worker 4 allowed: <nil>
    登录后复制

    前两个请求在burst内,直接可以获得,后面的请求按照qps的速率生成。

    其他

    Redis还可用于全局计数、去重以及发布订阅等不同情境。参考Redis官方提供的模块,可以通过加载这些模块实现过滤、限流等特性。

    以上是Golang分布式应用之Redis怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

    本站声明
    本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    Video Face Swap

    Video Face Swap

    使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

    热工具

    记事本++7.3.1

    记事本++7.3.1

    好用且免费的代码编辑器

    SublimeText3汉化版

    SublimeText3汉化版

    中文版,非常好用

    禅工作室 13.0.1

    禅工作室 13.0.1

    功能强大的PHP集成开发环境

    Dreamweaver CS6

    Dreamweaver CS6

    视觉化网页开发工具

    SublimeText3 Mac版

    SublimeText3 Mac版

    神级代码编辑软件(SublimeText3)

    redis集群模式怎么搭建 redis集群模式怎么搭建 Apr 10, 2025 pm 10:15 PM

    Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

    redis数据怎么清空 redis数据怎么清空 Apr 10, 2025 pm 10:06 PM

    如何清空 Redis 数据:使用 FLUSHALL 命令清除所有键值。使用 FLUSHDB 命令清除当前选定数据库的键值。使用 SELECT 切换数据库,再使用 FLUSHDB 清除多个数据库。使用 DEL 命令删除特定键。使用 redis-cli 工具清空数据。

    redis怎么读取队列 redis怎么读取队列 Apr 10, 2025 pm 10:12 PM

    要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

    redis命令行怎么用 redis命令行怎么用 Apr 10, 2025 pm 10:18 PM

    使用 Redis 命令行工具 (redis-cli) 可通过以下步骤管理和操作 Redis:连接到服务器,指定地址和端口。使用命令名称和参数向服务器发送命令。使用 HELP 命令查看特定命令的帮助信息。使用 QUIT 命令退出命令行工具。

    Debian下PostgreSQL性能优化 Debian下PostgreSQL性能优化 Apr 12, 2025 pm 08:18 PM

    提升Debian系统中PostgreSQL数据库性能,需要综合考虑硬件、配置、索引、查询等多个方面。以下策略能有效优化数据库性能:一、硬件资源优化内存扩容:充足的内存对于缓存数据和索引至关重要。高速存储:使用SSD固态硬盘可显着提升I/O性能。多核处理器:充分利用多核处理器实现查询并行处理。二、数据库参数调优shared_buffers:根据系统内存大小设置,建议设置为系统内存的25%-40%。 work_mem:控制排序和哈希操作的内存,通常设置为64MB到256M

    C和Golang:表演至关重要时 C和Golang:表演至关重要时 Apr 13, 2025 am 12:11 AM

    C 更适合需要直接控制硬件资源和高性能优化的场景,而Golang更适合需要快速开发和高并发处理的场景。1.C 的优势在于其接近硬件的特性和高度的优化能力,适合游戏开发等高性能需求。2.Golang的优势在于其简洁的语法和天然的并发支持,适合高并发服务开发。

    redis过期策略怎么设置 redis过期策略怎么设置 Apr 10, 2025 pm 10:03 PM

    Redis数据过期策略有两种:定期删除:定期扫描删除过期键,可通过 expired-time-cap-remove-count、expired-time-cap-remove-delay 参数设置。惰性删除:仅在读取或写入键时检查删除过期键,可通过 lazyfree-lazy-eviction、lazyfree-lazy-expire、lazyfree-lazy-user-del 参数设置。

    Golang的影响:速度,效率和简单性 Golang的影响:速度,效率和简单性 Apr 14, 2025 am 12:11 AM

    GoimpactsdevelopmentPositationalityThroughSpeed,效率和模拟性。1)速度:gocompilesquicklyandrunseff,ifealforlargeprojects.2)效率:效率:ITScomprehenSevestAndArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdEcceSteral Depentencies,增强开发的简单性:3)SimpleflovelmentIcties:3)简单性。

    See all articles