使用Scikit-Learn,快速掌握机器学习预测方法
在本文中,我们将讨论预测函数的区别和它们的用途。
在机器学习中,predict和predict_proba、predict_log_proba和decision_function方法都是用来根据训练好的模型进行预测的。
predict方法
使用predict方法可进行二元分类或多元分类预测,输出预测标签。例如,如果你已经训练了一个逻辑回归模型来预测一个客户是否会购买产品,则可以使用predict方法来预测一个新客户是否会购买产品。
我们将使用来自scikit-learn的乳腺癌数据集。这个数据集包含了肿瘤观察结果和肿瘤是恶性还是良性的相应标签。
import numpy as npfrom sklearn.svm import SVCfrom sklearn.preprocessing import StandardScalerfrom sklearn.pipeline import make_pipelineimport matplotlib.pyplot as pltfrom sklearn.datasets import load_breast_cancer# 加载数据集dataset = load_breast_cancer(as_frame=True)# 创建特征和目标X = dataset['data']y = dataset['target']# 将数据集分割成训练集和测试集from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y , test_size=0.25, random_state=0)# 我们创建一个简单的管道来规范数据并使用`SVC`分类器训练模型svc_clf = make_pipeline(StandardScaler(),SVC(max_iter=1000, probability=True))svc_clf.fit(X_train, y_train)
# 我们正在预测X_test的第一个条目print(svc_clf.predict(X_test[:1]))
# 预测X_test的第一个条目属于哪一类[0]
predict_proba方法
使用predict_proba函数可以对每个类别进行概率预测,并返回所可能的每个类别标签的概率估计。在二元或多元分类问题中,通常采用这种方法以确定每种可能结果的概率。例如,如果你已经训练了一个模型,将动物的图像分为猫、狗和马,你可以使用predict_proba方法来获得每个类别标签的概率估计。
print(svc_clf.predict_proba(X_test[:1]))
[[0.99848307 0.00151693]]
predict_log_proba方法
predict_log_proba方法与predict_proba类似,但它返回概率估计值的对数,而不是原始概率。这对处理极小或极大的概率值是十分实用的,因为可以避免数值下溢或溢出的问题。
print(svc_clf.predict_log_proba(X_test[:1]))
[[-1.51808474e-03 -6.49106473e+00]]
decision_function方法
Linear binary classification models can utilize the decision_function method.。它会针对每个输入数据点生成一个分数,这个分数可用于推测其对应的类别标签。可以根据应用或领域知识来设置将数据点分类为正或负的阈值。
print(svc_clf.decision_function(X_test[:1]))
[-1.70756057]
总结
- 当你想要得到输入数据的预测类标签时,对二元或多元分类问题使用predict。
- 当你想要获得每个可能的类别标签的概率估计值时,请使用predict_proba处理二元或多元分类问题。
- 当你需要处理非常小或非常大的概率值时,或者当你想要避免数字下溢或溢出问题时,请使用predict_log_proba。
- 当你想获得每个输入数据点的分数时,使用decision_function处理线性模型的二元分类问题。
注意:某些分类器的预测方法可能不完整或需要额外参数才能访问函数。例如:SVC需要将概率参数设置为True,才能使用概率预测。
以上是使用Scikit-Learn,快速掌握机器学习预测方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

而后悔莫及、人们常常会因为一些原因不小心将某些联系人删除、微信作为一款广泛使用的社交软件。帮助用户解决这一问题,本文将介绍如何通过简单的方法找回被删除的联系人。1.了解微信联系人删除机制这为我们找回被删除的联系人提供了可能性、微信中的联系人删除机制是将其从通讯录中移除,但并未完全删除。2.使用微信内置“通讯录恢复”功能微信提供了“通讯录恢复”节省时间和精力,用户可以通过该功能快速找回之前被删除的联系人,功能。3.进入微信设置页面点击右下角,打开微信应用“我”再点击右上角设置图标、进入设置页面,,

番茄小说是一款非常热门的小说阅读软件,我们在番茄小说中经常会有新的小说和漫画可以去阅读,每一本小说和漫画都很有意思,很多小伙伴也想着要去写小说来赚取赚取零花钱,在把自己想要写的小说内容编辑成文字,那么我们要怎么样在这里面去写小说呢?小伙伴们都不知道,那就让我们一起到本站本站中花点时间来看写小说的方法介绍吧。分享番茄小说写小说方法教程 1、首先在手机上打开番茄免费小说app,点击个人中心——作家中心 2、跳转到番茄作家助手页面——点击创建新书在小说的结

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

手机游戏成为了人们生活中不可或缺的一部分,随着科技的发展。它以其可爱的龙蛋形象和有趣的孵化过程吸引了众多玩家的关注,而其中一款备受瞩目的游戏就是手机版龙蛋。帮助玩家们在游戏中更好地培养和成长自己的小龙,本文将向大家介绍手机版龙蛋的孵化方法。1.选择合适的龙蛋种类玩家需要仔细选择自己喜欢并且适合自己的龙蛋种类,根据游戏中提供的不同种类的龙蛋属性和能力。2.提升孵化机的等级玩家需要通过完成任务和收集道具来提升孵化机的等级,孵化机的等级决定了孵化速度和孵化成功率。3.收集孵化所需的资源玩家需要在游戏中

字体大小的设置成为了一项重要的个性化需求,随着手机成为人们日常生活的重要工具。以满足不同用户的需求、本文将介绍如何通过简单的操作,提升手机使用体验,调整手机字体大小。为什么需要调整手机字体大小-调整字体大小可以使文字更清晰易读-适合不同年龄段用户的阅读需求-方便视力不佳的用户使用手机系统自带字体大小设置功能-如何进入系统设置界面-在设置界面中找到并进入"显示"选项-找到"字体大小"选项并进行调整第三方应用调整字体大小-下载并安装支持字体大小调整的应用程序-打开应用程序并进入相关设置界面-根据个人

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
