目录
1. 线性查找
2. 二分查找
3. 插值查找
4. 分块查找
首页 后端开发 Python教程 Python查找算法如何实现

Python查找算法如何实现

May 28, 2023 am 11:21 AM
python

查找算法是用来检索序列数据(群体)中是否存在给定的数据(关键字),常用查找算法有:

  • 线性查找:线性查找也称为顺序查找,用于在无序数列中查找。

  • 二分查找:二分查找也称为折半查找,其算法用于有序数列。

  • 插值查找:插值查找是对二分查找算法的改进。

  • 分块查找:又称为索引顺序查找,它是线性查找的改进版本。

  • 树表查找:树表查找又可分二叉查找树、平衡二叉树查找。

  • 哈希查找:哈希查找可以直接通过关键字查找到所需要数据。

因树表查找、哈希查找的所需篇幅较多,就不在本文讲解。This article provides a comprehensive overview of search algorithms beyond tree-based and hash-based approaches. It analyzes the strengths and weaknesses of each algorithm and proposes corresponding optimization strategies.。

1. 线性查找

顺序查找又被称为线性查找,是一种基于原始、穷举、暴力查找的算法。容易理解、编码实现也简单。如果处理的数据量较大,由于算法思想比较朴素且算法缺乏优化设计,其性能可能会较低。

线性查找思想:

  • 从头至尾逐一扫描原始列表中的每一个数据,并和给定的关键字进行比较。

  • 如果比较相等,则查找成功。

  • 当扫描结束后,仍然没有找到与给定关键字相等的数据,则宣布查找失败。

根据线性查找算法的描述,很容易编码实现:

'''
线性查找算法
参数:
    nums: 序列
    key:关键字
返回值:
    关键字在序列中的位置
    如果没有,则返回 -1
'''
def line_find(nums, key):
    for i in range(len(nums)):
        if nums[i] == key:
            return i
    return -1
'''
测试线性算法
'''
if __name__ == "__main__":
    nums = [4, 1, 8, 10, 3, 5]
    key = int(input("请输入要查找的关键字:"))
    pos = line_find(nums, key)
    print("关键字 {0} 在数列的第 {1} 位置".format(key, pos))
'''
输出结果:
请输入要查找的关键字:3
关键字 3 在数列的 4 位置
'''
登录后复制

线性查找算法的平均时间复杂度分析。

1.运气最好的情况:如果要查找的关键字恰好在数列的第 1 个位置,则只需要查找 1 次就可以了。

如在数列=[4,1,8,10,3,5]中查找关键字 4 。

只需要查找 1 次。

2.运气最不好的情况:一至扫描到数列最尾部时,才找到关键字。

如在数列=[4,1,8,10,3,5]中查找是否存在关键字 5 。

则需要查找的次数等于数列的长度,此处即为 6 次。

3.运气不好不坏:如果要查找的关键字在数列的中间某个位置,则查找的概率是 1/n 。

n 为数列长度。

线性查找的平均查找次数应该=(1+n)/2。该句重写为:其时间复杂度为 O(n)。

大 O 表示法中忽视常量。

线性查找最糟糕情况是:扫描完整个数列后,没有所要查找的关键字。

如在数列=[4,1,8,10,3,5]中查找是否存在关键字 12 。

扫描了 6 次后,铩羽而归!!

改良线性查找算法

可以对线性查找算法进行相应的优化。如设置“前哨站”。所谓“前哨站”,就是把要查找的关键字在查找之前插入到数列的尾部。

def line_find_(nums, key):
    i = 0
    while nums[i] != key:
        i += 1
    return -1 if i == len(nums)-1 else i

'''
测试线性算法
'''
if __name__ == "__main__":
    nums = [4, 1, 8, 10, 3, 5]
    key = int(input("请输入要查找的关键字:"))
    # 查找之前,先把关键字存储到列到的尾部
    nums.append(key)
    pos = line_find_(nums, key)
    print("关键字 {0} 在数列的第 {1} 位置".format(key, pos))
登录后复制

用"前哨站"优化后的线性查找算法的时间复杂度没有变化,O(n)。或者说从 2 者代码上看,也没有太多变化。

但从代码的实际运行角度而言,第 2 种方案减少了 if 指令的次数,同样减少了编译后的指令,也就减少了 CPU执行指令的次数,这种优化属于微优化,不是算法本质上的优化。

使用计算机编程语言所编写的代码为伪指令代码。

经过编译后的指令代码叫 CPU 指令集。

有一种优化方案就是减少编译后的指令集。

2. 二分查找

有序查找指所查找的数据必须按照一定顺序进行排列,而二分查找属于有序查找。如在数列=[4,1,8,10,3,5,12]中查找是否存在关键字 4 ,因数列不是有序的,所以不能使用二分查找,如果要使用二分查找算法,则需要先对数列进行排序。

二分查找使用了二分(折半)算法思想,二分查找算法中有 2 个关键信息需要随时获取:

  • 一个是数列的中间位置 mid_pos。

  • 一个是数列的中间值mid_val。

现在通过在数列 nums=[1,3,4,5,8,10,12] 中查找关键字 8来了解二分查找的算法流程。

在进行二分查找之前,先定义 2 个位置(指针)变量:

  • 左指针 l_idx 初始指向数列的最左边数字。

  • 右指针 r_idx 初始指向数列的最右边数字。

Python查找算法如何实现

第 1 步:通过左、右指针的当前位置计算出数列的中间位置 mid_pos=3,并根据 mid_pos 的值找出数列中间位置所对应的值 mid_val=nums[mid_pos]5

Python查找算法如何实现

二分查找算法的核心就是要找出数列中间位置的值。

第 2 步:把数列中间位置的值和给定的关键字相比较。这里关键字是 8,中间位置的值是 5,显然 8 是大于 5,因为数列是有序的,自然会想到没有必要再与数列中 5 之前的数字比较,而是专心和 5 之后的数字比较。

一次比较后再次查找的数列范围缩小了一半。这也是二分算法的由来。

Python查找算法如何实现

第 3 步:根据比较结果,调整数列的大小,这里的大小调整不是物理结构上调整,而是逻辑上调整,调整后原数列没有变化。也就是通过修改左指针或右指针的位置,从逻辑上改变数列大小。调整后的数列如下图。

二分查找算法中数列的范围由左指针到右指针的长度决定。

Python查找算法如何实现

第 4 步:重复上述步骤,至到找到或找不到为止。

编码实现二分查找算法

'''
二分查找算法
'''
def binary_find(nums, key):
    # 初始左指针
    l_idx = 0
    # 初始在指针
    r_ldx = len(nums) - 1
    while l_idx <= r_ldx:
        # 计算出中间位置
        mid_pos = (r_ldx + l_idx) // 2
        # 计算中间位置的值
        mid_val = nums[mid_pos]
        # 与关键字比较
        if mid_val == key:
            # 出口一:比较相等,有此关键字,返回关键字所在位置
            return mid_pos
        elif mid_val > key:
            # 说明查找范围应该缩少在原数的左边
            r_ldx = mid_pos - 1
        else:
            l_idx = mid_pos + 1
    # 出口二:没有查找到给定关键字
    return -1

&#39;&#39;&#39;
测试二分查找
&#39;&#39;&#39;
if __name__ == "__main__":
    nums = [1, 3, 4, 5, 8, 10, 12]
    key = 3
    pos = binary_find(nums, key)
    print(pos)
登录后复制

通过前面对二分算法流程的分析,可知二分查找的子问题和原始问题是同一个逻辑,所以可以使用递归实现:

&#39;&#39;&#39;
递归实现二分查找
&#39;&#39;&#39;
def binary_find_dg(nums, key, l_idx, r_ldx):
    if l_idx > r_ldx:
        # 出口一:没有查找到给定关键字
        return -1
    # 计算出中间位置
    mid_pos = (r_ldx + l_idx) // 2
    # 计算中间位置的值
    mid_val = nums[mid_pos]
    # 与关键字比较
    if mid_val == key:
        # 出口二:比较相等,有此关键字,返回关键字所在位置
        return mid_pos
    elif mid_val > key:
        # 说明查找范围应该缩少在原数的左边
        r_ldx = mid_pos - 1
    else:
        l_idx = mid_pos + 1
    return binary_find_dg(nums, key, l_idx, r_ldx)
&#39;&#39;&#39;
测试二分查找
&#39;&#39;&#39;
if __name__ == "__main__":
    nums = [1, 3, 4, 5, 8, 10, 12]
    key = 8
    pos = binary_find_dg(nums, key,0,len(nums)-1)
    print(pos)
登录后复制

二分查找性能分析:

二分查找的过程用树形结构描述会更直观,当搜索完毕后,绘制出来树结构是一棵二叉树。

1.如上述代码执行过程中,先找到数列中的中间数字 5,然后以 5 为根节点构建唯一结点树。

Python查找算法如何实现

2.5 和关键字 8 比较后,再在以数字 5 为分界线的右边数列中找到中间数字10,树形结构会变成下图所示。

Python查找算法如何实现

3.10 和关键字 8比较后,再在10 的左边查找。

Python查找算法如何实现

查找到8 后,意味着二分查找已经找到结果,只需要 3 次就能查找到最终结果。

从二叉树的结构上可以直观得到结论:二分查找关键字的次数由关键字在二叉树结构中的深度决定。

4.上述是查找给定的数字8,为了能查找到数列中的任意一个数字,最终完整的树结构应该如下图所示。

Python查找算法如何实现

很明显,树结构是标准的二叉树。从树结构上可以看出,无论查找任何数字,最小是 1 次,如查找数字 5,最多也只需要 3 次,比线性查找要快很多。

根据二叉树的特性,结点个数为 n 的树的深度为 h=log2(n+1),所以二分查找算法的大 O 表示的时间复杂度为 O(logn),是对数级别的时间度。

当对长度为1000的数列进行二分查找时,所需次数最多只要 10 次,二分查找算法的效率显然是高效的。

然而,二分查找算法在实行之前需要对数列进行排序,因此前面所述的时间复杂度并未包含排序所需的时间。所以,二分查找一般适合数字变化稳定的有序数列。

3. 插值查找

插值查找本质是二分查找,插值查找对二分查找算法中查找中间位置的计算逻辑进行了改进。

原生二分查找算法中计算中间位置的逻辑:中间位置等于左指针位置加上右指针位置然后除以 2

    # 计算中间位置
    mid_pos = (r_ldx + l_idx) // 2
登录后复制

插值算法计算中间位置逻辑如下所示:

key 为要查找的关键字!!

# 插值算法中计算中间位置
mid_pos = l_idx + (key - nums[l_idx]) // (nums[r_idx] - nums[l_idx]) * (r_idx - l_idx)
登录后复制

编码实现插值查找:

# 插值查找基于二分法,只是mid计算方法不同
def binary_search(nums, key):
    l_idx = 0
    r_idx = len(nums) - 1
    old_mid = -1
    mid_pos = None
    while l_idx < r_idx and nums[0] <= key and nums[r_idx] >= key and old_mid != mid_pos:
        # 中间位置计算
        mid_pos = l_idx + (key - nums[l_idx]) // (nums[r_idx] - nums[l_idx]) * (r_idx - l_idx)
        old_mid = mid_pos
        if nums[mid_pos] == key:
            return "index is {}, target value is {}".format(mid_pos, nums[mid_pos])
            # 此时目标值在中间值右边,更新左边界位置
        elif nums[mid_pos] < key:
            l_idx = mid_pos + 1
        # 此时目标值在中间值左边,更新右边界位置
        elif nums[mid_pos] > key:
            r_idx = mid_pos - 1
    return "Not find"

li =[1, 3, 4, 5, 8, 10, 12]
print(binary_search(li, 6))
登录后复制

插值算法的中间位置计算时,对中间位置的计算有可能多次计算的结果是一样的,此时可以认为查找失败。

插值算法的性能介于线性查找和二分查找之间。

如果序列具有较大数量的均匀分布的数字,插值查找算法的平均执行效率要比二分查找好得多。如果数据在数列中分布不均匀,插值算法并不是最优选择。

4. 分块查找

分块查找类似于数据库中的索引查询,所以分块查找也称为索引查找。其算法的核心还是线性查找。

现有原始数列 nums=[5,1,9,11,23,16,12,18,24,32,29,25],需要查找关键字11 是否存在。

第 1 步:使用分块查找之前,先要对原始数列按区域分成多个块。至于分成多少块,可根据实际情况自行定义。分块时有一个要求,前一个块中的最大值必须小于后一个块的最小值。

块内部无序,但要保持整个数列按块有序。

Python查找算法如何实现

分块查找要求原始数列从整体上具有升序或降序趋势,如果数列的分布不具有趋向性,如果仍然想使用分块查找,则需要进行分块有序调整。

第 2 步:根据分块信息,建立索引表。索引表至少应该有 2 个字段,每一块中的最大值数字以及每一块的起始地址。显然索引表中的数字是有序的。

Python查找算法如何实现

第 3 步:查找给定关键字时,先查找索引表,查询关键字应该在那个块中。如查询关键字 29,可知应该在第三块中,然后根据索引表中所提供的第三块的地址信息,再进入第三块数列,按线性匹配算法查找29 具体位置。

Python查找算法如何实现

编码实现分块查找:

先编码实现根据分块数量、创建索引表,这里使用二维列表保存储索引表中的信息。

&#39;&#39;&#39;
分块:建立索引表
参数:
    nums 原始数列
    blocks 块大小
&#39;&#39;&#39;
def create_index_table(nums, blocks):
    # 索引表使用列表保存
    index_table = []
    # 每一块的数量
    n = len(nums) // blocks
    for i in range(0, len(nums), n):
        # 索引表中的每一行记录
        tmp_lst = []
        # 最大值
        tmp_lst.append(max(nums[i:i + n-1]))
        # 起始地址
        tmp_lst.append(i)
        # 终止地址
        tmp_lst.append(i + n - 1)
        # 添加到索引表中
        index_table.append(tmp_lst)
    return index_table
&#39;&#39;&#39;
测试分块
&#39;&#39;&#39;
nums = [5, 1, 9, 11, 23, 16, 12, 18, 24, 32, 29, 25]
it = create_index_table(nums, 3)
print(it)
&#39;&#39;&#39;
输出结果:
[[11, 0, 3], [23, 4, 7], [32, 8, 11]]
&#39;&#39;&#39;
登录后复制

代码执行后,输出结果和分析的结果一样。

以上代码仅对整体趋势有序的数列进行分块。如果整体没有向有序趋势发展,则需要提供适当的块排序计划,有兴趣的人可以自行完成。

如上代码仅为说明分块查找算法。

分块查找的完整代码:

&#39;&#39;&#39;
分块:建立索引表
参数:
    nums 原始数列
    blocks 块大小
&#39;&#39;&#39;
def create_index_table(nums, blocks):
    # 索引表使用列表保存
    index_table = []
    # 每一块的数量
    n = len(nums) // blocks
    for i in range(0, len(nums), n):
        tmp_lst = []
        tmp_lst.append(max(nums[i:i + n - 1]))
        tmp_lst.append(i)
        tmp_lst.append(i + n - 1)
        index_table.append(tmp_lst)
    return index_table

&#39;&#39;&#39;
使用线性查找算法在对应的块中查找
&#39;&#39;&#39;
def lind_find(nums, start, end):
    for i in range(start, end):
        if key == nums[i]:
            return i
            break
    return -1

&#39;&#39;&#39;
测试分块
&#39;&#39;&#39;
nums = [5, 1, 9, 11, 23, 16, 12, 18, 24, 32, 29, 25]
key = 16
# 索引表
it = create_index_table(nums, 3)
# 索引表的记录编号
pos = -1
# 在索引表中查询
for n in range(len(it) - 1):
    # 是不是在第一块中
    if key <= it[0][0]:
        pos = 0
    # 其它块中
    if it[n][0] < key <= it[n + 1][0]:
        pos = n + 1
        break
if pos == -1:
    print("{0} 在 {1} 数列中不存在".format(key, nums))
else:
    idx = lind_find(nums, it[pos][1], it[pos][2] + 1)
    if idx != -1:
        print("{0} 在 {1} 数列的 {2} 位置".format(key, nums, idx))
    else:
        print("{0} 在 {1} 数列中不存在".format(key, nums))
&#39;&#39;&#39;
输出结果
16 在 [5, 1, 9, 11, 23, 16, 12, 18, 24, 32, 29, 25] 数列的第 5 位置
&#39;&#39;&#39;
登录后复制

分块查找对于整体趋向有序的数列,其查找性能较好。如果原始数列没有整体有序性,就需要使用块排序算法,其时间复杂度没有二分查找算法好。

建立索引表是分块查找所必需的,但这会增加额外的存储空间,因此其空间复杂度较高。其优于二分的地方在于只需要对原始数列进行部分排序。本质还是以线性查找为主。

以上是Python查找算法如何实现的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

See all articles