Redis数据库常见的键值设计有哪些
用户登录系统
记录用户登录信息的一个系统,我们简化业务后只留下一张表。
关系型数据库的设计
mysql>select*fromlogin;
+---------+----------------+-------------+---------------------+
|user_id|name|login_times|last_login_time|
+---------+----------------+-------------+---------------------+
|1|kenthompson|5|2011-01-0100:00:00|
|2|dennisritchie|1|2011-02-0100:00:00|
|3|JoeArmstrong|2|2011-03-0100:00:00|
+---------+----------------+-------------+---------------------+
user_id表的主键,name表示用户名,login_times表示该用户的登录次数,每次用户登录后,login_times会自增,而last_login_time更新为当前时间。
REDIS的设计
关系型数据转化为KV数据库,我的方法如下:
key表名:主键值:列名
value列值
一般使用冒号做分割符,这是不成文的规矩。比如在php-adminforredis系统里,就是默认以冒号分割,于是user:1user:2等key会分成一组。于是以上的关系数据转化成kv数据后记录如下:
Setlogin:1:login_times5
Setlogin:2:login_times1
Setlogin:3:login_times2
Setlogin:1:last_login_time2011-1-1
Setlogin:2:last_login_time2011-2-1
Setlogin:3:last_login_time2011-3-1
setlogin:1:name”kenthompson“
setlogin:2:name“dennisritchie”
setlogin:3:name”JoeArmstrong“
如果已知主键,可以使用get和set方法获取或修改用户的姓名、登录次数和最后登录时间。
一般用户是无法知道自己的id的,只知道自己的用户名,所以还必须有一个从name到id的映射关系,这里的设计与上面的有所不同。
set"login:kenthompson:id"1
set"login:dennisritchie:id"2
set"login:JoeArmstrong:id"3
这样每次用户登录的时候业务逻辑如下(python版),r是redis对象,name是已经获知的用户名。
#获得用户的id
uid=r.get("login:%s:id"%name)
#自增用户的登录次数
The following is a possible rephrased sentence: ret = r.incr("login:%s:login_times" % uid)
#更新该用户的最后登录时间
ret=r.set("login:%s:last_login_time"%uid,datetime.datetime.now())
如果需求仅仅是已知id,更新或者获取某个用户的最后登录时间,登录次数,关系型和kv数据库无啥区别。一个通过btreepk,一个通过hash,效果都很好。
假设有如下需求,查找最近登录的N个用户。开发人员看看,还是比较简单的,一个sql搞定。
请执行从“login”表中选择所有列,按“last_login_time”列进行降序排序,并限制结果集大小为N
DBA了解需求后,考虑到以后表如果比较大,所以在last_login_time上建个索引。通过从索引的最右侧开始访问N条记录,然后进行N次回表操作,执行计划产生了显著的效果。
有哪些常见Redis数据库键值的设计
过了两天,又来一个需求,需要知道登录次数最多的人是谁。同样的关系型如何处理?DEV说简单
select*fromloginorderbylogin_timesdesclimitN
DBA一看,又要在login_time上建立一个索引。有没有觉得有点问题呢,表上每个字段上都有素引。
问题源头在于关系型数据库的数据存储不够灵活,数据只能使用一种按行排列的堆表方式进行存储。统一的数据结构意味着你必须使用索引来改变sql的访问路径来快速访问某个列的,而访问路径的增加又意味着你必须使用统计信息来辅助,于是一大堆的问题就出现了。
没有索引,没有统计计划,没有执行计划,这就是kv数据库。
针对获取最新的N条数据的需求,在Redis中,链表的后进先出的特点非常适合。我们在上面的登录代码之后添加一段代码,维护一个登录的链表,控制他的长度,使得里面永远保存的是最近的N个登录用户。
#把当前登录人添加到链表里
ret=r.lpush("login:last_login_times",uid)
#保持链表只有N位
ret=redis.ltrim("login:last_login_times",0,N-1)
这样需要获得最新登录人的id,如下的代码即可
last_login_list=r.lrange("login:last_login_times",0,N-1)
另外,求登录次数最多的人,对于排序,积分榜这类需求,sortedset非常的适合,我们把用户和登录次数统一存储在一个sortedset里。
zaddlogin:login_times51
zaddlogin:login_times12
zaddlogin:login_times23
这样假如某个用户登录,额外维护一个sortedset,代码如此
#对该用户的登录次数自增1
ret=r.zincrby("login:login_times",1,uid)
那么如何获得登录次数最多的用户呢,逆序排列取的排名第N的用户即可
ret=r.zrevrange("login:login_times",0,N-1)
可以看出,DEV需要添加2行代码,而DBA不需要考虑索引什么的。
TAG系统
tag在互联网应用里尤其多见,如果以传统的关系型数据库来设计有点不伦不类。我们以查找书的例子来看看redis在这方面的优势。
关系型数据库的设计
两张表,一张book的明细,一张tag表,表示每本的tag,一本书存在多个tag。
mysql>select*frombook;
+------+-------------------------------+----------------+
|id|name|author|
+------+-------------------------------+----------------+
|1|TheRubyProgrammingLanguage|MarkPilgrim|
|1|Rubyonrail|DavidFlanagan|
|1|ProgrammingErlang|JoeArmstrong|
+------+-------------------------------+----------------+
mysql>select*fromtag;
+---------+---------+
|tagname|book_id|
+---------+---------+
|ruby|1|
|ruby|2|
|web|2|
|erlang|3|
+---------+---------+
假如有如此需求,查找即是ruby又是web方面的书籍,如果以关系型数据库会怎么处理?
selectb.name,b.authorfromtagt1,tagt2,bookb
wheret1.tagname='web'andt2.tagname='ruby'andt1.book_id=t2.book_idandb.id=t1.book_id
tag表自关联2次再与book关联,这个sql还是比较复杂的,如果要求即ruby,但不是web方面的书籍呢?
关系型数据其实并不太适合这些集合操作。
REDIS的设计
首先book的数据肯定要存储的,和上面一样。
setbook:1:name”TheRubyProgrammingLanguage”
Setbook:2:name”Rubyonrail”
Setbook:3:name”ProgrammingErlang”
setbook:1:author”MarkPilgrim”
Setbook:2:author”DavidFlanagan”
Setbook:3:author”JoeArmstrong”
tag表我们使用集合来存储数据,因为集合擅长求交集、并集
saddtag:ruby1
saddtag:ruby2
saddtag:web2
saddtag:erlang3
那么,即属于ruby又属于web的书?
inter_list=redis.sinter("tag.web","tag:ruby")
即属于ruby,但不属于web的书?
inter_list=redis.sdiff("tag.ruby","tag:web")
属于ruby和属于web的书的合集?
inter_list=redis.sunion("tag.ruby","tag:web")
简单到不行阿。
从以上2个例子可以看出在某些场景里,关系型数据库是不太适合的,你可能能够设计出满足需求的系统,但总是感觉的怪怪的,有种生搬硬套的感觉。
尤其登录系统这个例子,频繁的为业务建立索引。放在一个复杂的系统里,ddl(创建索引)有可能改变执行计划。由于业务复杂的老系统中的SQL千奇百怪,导致其他SQL使用不同的执行计划,因此这个问题难以预估。要求DBA对这个系统里所有的sql都了解,这点太难了。这个问题在oracle里尤其严重,每个DBA估计都碰到过。虽然现在有在线DDL方法,但对于像MySQL这样的系统来说,DDL仍然不太方便。碰到大表,DBA凌晨爬起来在业务低峰期操作,这事我没少干过。使用Redis来处理这种需求非常方便,只需要DBA预估容量即可。
以上是Redis数据库常见的键值设计有哪些的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

如何清空 Redis 数据:使用 FLUSHALL 命令清除所有键值。使用 FLUSHDB 命令清除当前选定数据库的键值。使用 SELECT 切换数据库,再使用 FLUSHDB 清除多个数据库。使用 DEL 命令删除特定键。使用 redis-cli 工具清空数据。

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

使用 Redis 指令需要以下步骤:打开 Redis 客户端。输入指令(动词 键 值)。提供所需参数(因指令而异)。按 Enter 执行指令。Redis 返回响应,指示操作结果(通常为 OK 或 -ERR)。

使用Redis进行锁操作需要通过SETNX命令获取锁,然后使用EXPIRE命令设置过期时间。具体步骤为:(1) 使用SETNX命令尝试设置一个键值对;(2) 使用EXPIRE命令为锁设置过期时间;(3) 当不再需要锁时,使用DEL命令删除该锁。

理解 Redis 源码的最佳方法是逐步进行:熟悉 Redis 基础知识。选择一个特定的模块或功能作为起点。从模块或功能的入口点开始,逐行查看代码。通过函数调用链查看代码。熟悉 Redis 使用的底层数据结构。识别 Redis 使用的算法。

在CentOS系统上,您可以通过修改Redis配置文件或使用Redis命令来限制Lua脚本的执行时间,从而防止恶意脚本占用过多资源。方法一:修改Redis配置文件定位Redis配置文件:Redis配置文件通常位于/etc/redis/redis.conf。编辑配置文件:使用文本编辑器(例如vi或nano)打开配置文件:sudovi/etc/redis/redis.conf设置Lua脚本执行时间限制:在配置文件中添加或修改以下行,设置Lua脚本的最大执行时间(单位:毫秒)

使用 Redis 命令行工具 (redis-cli) 可通过以下步骤管理和操作 Redis:连接到服务器,指定地址和端口。使用命令名称和参数向服务器发送命令。使用 HELP 命令查看特定命令的帮助信息。使用 QUIT 命令退出命令行工具。
