智能化时代加速到来,人工智能发展还需数据支撑
2023年,人工智能的火热超出了人们的想象。ChatGPT的推出让人工智能热潮燃起了第一把火。此后,一系列基于人工智能大模型的应用,让我们逐渐意识到如今的人工智能已不再仅仅只是简单地“语音助手”,在一定程度上可以帮助或者替代人类在各个行业的具体工作。
在人工智能发展如火如荼的背后,以机器学习为主的人工智能技术的高速发展依赖于底层大数据的丰富程度,强大的模型需要含有大量样本的数据集作为基础,数据的质量、多样性将对算法模型的成败产生重大影响,高精度AI数据交付在助力AI产业场景化落地的同时,不仅带来了更好的用户体验,也进一步加快了智能化时代的到来,带动算力、算法等领域的振兴。
在推进人工智能在不同领域的实际应用过程中,提高AI数据质量标准已成为业界广泛关注的重要议题。随着人工智能技术深入无人驾驶、智慧医疗、语音交互等诸多行业领域,AI数据维度和样本复杂性的要求正在变得越来越高。IDC 研究发现,积极参与数字化转型的客户群体都有 AI 数据服务的需求,其中标注质量、标注效率、知识经验、数据安全、整体成本五个维度,构成了用户对 AI 数据服务商的能力要求。
数据对人工智能的发展至关重要。作为人工智能数据服务领域的翘楚, 云测数据针对人工智能时代数据需求和发展趋势,立足高质量、场景化的AI训练数据服务,通过数据产品、数据处理工具与数据服务的“三螺旋”,为智能驾驶、智慧城市、智能IOT、智慧金融等行业提供高效率、高质量、多维度、场景化的数据服务与策略,持续为计算机视觉、语音识别、自然语言处理、知识图谱等AI主流技术领域提供高价值数据支持。
云测数据一直专注于技术研发和更新,已推出“云测数据标注平台”、“AI数据集管理系统”等技术成果。通过结构创新、智能化、工程化、标准化的标注平台产品赋能AI训练数据行业,设计了从创建任务到最后的验收等科学规范的数据处理流程,极大地加速了人工智能相关应用的落地迭代周期,助力企业AI数据训练综合效率提升200%、标注精准度最高达99.99%。其源源不断产出的高质量、场景化的AI数据,促使着人工智能产业加速发展,显著提升了Al应用的规模化落地效果。
在行业标准的制定上,云测数据先后参与编制了《智能网联汽车激光雷达点云数据标注要求及方法》、《智能网联汽车场景数据图像标注要求与方法》,助力人工智能数据服务在落地领域规范化发展。据了解,云测数据还参与编写了中国信息通信研究院云计算与大数据研究所(中国信通院云大所)重磅发布的全球首个AI模型开发管理标准,这也彰显了云测数据在人工智能数据方面的领先实践。
云测数据的努力,获得业界和媒体的一致认可,先后获得“2022可信AI案例人工智能平台应用标杆案例”、“2022年人工智能年度评选最佳服务平台奖、“星辰20:2023中国AI数据平台创新企业” 等富有含金量的奖项,彰显了其在技术领域的先进性与硬实力,目前其技术平台已经应用到汽车、安防、手机、家居、金融、教育、新零售、地产等行业,快速响应不同场景下的AI训练数据多样化需求。
以上是智能化时代加速到来,人工智能发展还需数据支撑的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
