大模型时代来了!数安风险如何应对?小蛮腰AI峰会专家支招
ChatGPT等大语言模型爆火背后原因是什么?给哪些行业产业带来福音?潜在泡沫风险在哪里?5月25日至26日,在2023小蛮腰科技大会分论坛——“迈向智能时代,实现文明跃迁”AIGC专场峰会上,20余位AI领域的研究者、实践者,共同探讨AIGC应用与商业新范式、各行业领域发展新路径,以及潜在数据安全风险、伦理问题。
在26日峰会现场的新书发布仪式上,《大模型时代》作者、曾任阿里巴巴资深产品专家兼事业部副总经理、硅谷AI创业公司联合创始人兼首席运营官龙志勇接受南都采访时坦言,生成式AI要走先规范、后发展模式,应对大模型潜在泡沫风险既有技术手段,如大模型自我评估、合规算法审核等,又有人工流程,更重要的是产业要对问题的解决难度、周期有合理的预期,才能避免过度乐观带来的风险。
大模型掀起新一轮智力革命与产业重构
ChatGPT等生成式人工智能幕后真正的智能“大脑”,正是大语言模型!基于生成式预训练大模型的技术突破,带来面向个人、深入行业的多重应用,引发新一轮智力革命与产业重构,构建全新的脑机协作关系。
大模型时代已经到来!龙志勇透露,《大模型时代》对技术、应用和产业变化进行深入分析、阐述,生动形象解释ChatGPT大模型背后的原理,描绘大模型将如何驱动社会进入智能革命和脑机协作时代,并总结企业在自身业务中应用大模型的注意事项和方法论,为个人、企业应对变革提出建议。据其称,大模型在知识工作、商业企业、创意娱乐等领域已经具体应用,主要带来两种创新:渐进式创新、颠覆性创新。
在峰会现场主题演讲中,人工智能科学家刘志毅也提到,人工智能赋能经济社会发展各领域,下游各领域的产业升级对大模型需求持续走高。据测算2022年中国人工智能行业市场规模为3.7亿元,预计2027年将达15.37亿元,有望在下游制造、交通、金融、医疗等多领域不断渗透,实现大规模落地应用。
《大模型时代》在5月26日“迈向智能时代,实现文明跃迁”2023AIGC专场峰会上发布。
生成式人工智能带来信任侵蚀等风险
不过,随着大模型的广泛应用,潜在泡沫也随之涌现。三星引入ChatGPT不到20天,就被曝机密数据泄露。人们对于AI变脸、AI绘画等技术所带来的法律风险、伦理问题和数据安全问题越来越关注。
谈及“大模型时代的AI科技创新与伦理治理”时,刘志毅表示,生成式人工智能确实存在一定风险,如果在扩展规模时没有考虑、缓解这些风险,可能会减缓转型速度。训练模型持续更新以提升性能,可能会引起对敏感数据、隐私以及安全的担忧。参与生成式人工智能的开发、消费、讨论和监管的所有人都应努力管理信任侵蚀、长期的员工失业风险、偏见和歧视、数据隐私和知识产权的保护等风险。
刘志毅接受南都采访时分享自己三点看法。他说,一是AI技术会自然进入国民经济、社会系统各领域,所在风险就会扩大,因为技术本身是黑盒的,如深度神经网络,通过技术、算法的计算,没人知道它每一步怎么达到,是不透明、不可解释的,就存在风险。二是AI技术很多时候与数字世界创造有关。比如深度伪造,包括伪造声音、图像,就是把实体身份变成数字身份,数字经济越发达的国家,越需要这些技术支撑,依赖性越强,但带来的风险也越大。三是我国非常强调应用场景与生态,这些应用场景落地必然是创新的,必然会带来风险,而这些风险随着场景创新而扩大,因此会前置性做监管,比如国家网信办发布《生成式人工智能服务管理办法(征求意见稿)》、科技部发布的《关于加强科技伦理治理的意见》等,都是前置性去考量一些风险。
《大模型时代》作者、曾任阿里巴巴资深产品专家兼事业部副总经理、硅谷AI创业公司联合创始人兼首席运营官龙志勇在新书发布仪式上发言。
对大模型算法可靠性、透明度提出要求
“数据隐私确实是GPT大模型的重要问题”,龙志勇接受南都采访时表示,最近OpenAI在美国应对质询时提前做了这方面准备工作,例如在ChatGPT中提供了关闭聊天记录的个人选项,用户可以拒绝大模型使用自己的隐私数据进行训练;针对企业客户,OpenAI将提供企业私有部署的模型,避免企业担忧自家的微调训练数据被大模型共享给了竞争对手,这些措施大概率会被国内大模型所采纳。
对于如何应对大模型潜在泡沫风险,如何平衡生成式人工智能的强规范、促发展的关系,龙志勇坦言,生成式AI要走先规范、后发展的模式。大模型的服务提供者作为AI生成物的法律责任的主要承担者,要对AIGC内容的正确性、价值取向负责,其合规压力还是相当大的,这属于强规范,“在《北京市促进通用人工智能创新发展的若干措施》文件中,提到鼓励生成式AI在科研等非面向公众服务领域实现向上向善应用,在中关村核心区先行先试,进行包容审慎的监管试点,我认为就属于一种积极的、在规范和发展之间求得平衡的信号”。
他提到,监管机构的思路要求大型算法在可靠性和透明度方面要做出改进。在《大模型时代》中发出了警告,指出潜在的产业泡沫风险,其中一个关键因素是大模型的可靠性和透明度问题。Ilya,OpenAI的首席科学家认为,大型模型幻觉和信息伪造是阻碍GPT在各行业应用的主要障碍。而幻觉问题之所以难以根除,首先是因为大模型的训练目标、方法导致,其次是AI自深度学习年代就开始具备的黑箱属性,不透明,无法在模型中定位具体问题所在。考虑到大模型新能力的涌现机制也不透明、不可预测,大模型产业需要在失控中追求可控,在规范中求得发展,这是最大的挑战。
出品:南都大数据研究院
研究员:袁炯贤
以上是大模型时代来了!数安风险如何应对?小蛮腰AI峰会专家支招的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

5月30日,腾讯宣布旗下混元大模型全面升级,基于混元大模型的App“腾讯元宝”正式上线,苹果及安卓应用商店均可下载。相比此前测试阶段的混元小程序版本,面向工作效率场景,腾讯元宝提供了AI搜索、AI总结、AI写作等核心能力;面向日常生活场景,元宝的玩法也更加丰富,提供了多个特色AI应用,并新增了创建个人智能体等玩法。“腾讯做大模型不争一时之先。”腾讯云副总裁、腾讯混元大模型负责人刘煜宏表示:“过去的一年,我们持续推进腾讯混元大模型的能力爬坡,在丰富、海量的业务场景中打磨技术,同时洞察用户的真实需求

火山引擎总裁谭待企业要做好大模型落地,面临模型效果、推理成本、落地难度的三大关键挑战:既要有好的基础大模型做支撑,解决复杂难题,也要有低成本的推理服务让大模型被广泛应用,还要更多工具、平台和应用帮助企业做好场景落地。——谭待火山引擎总裁01.豆包大模型首次亮相大使用量打磨好模型模型效果是AI落地最关键的挑战。谭待指出,只有大的使用量,才能打磨出好模型。目前,豆包大模型日均处理1,200亿tokens文本、生成3,000万张图片。为助力企业做好大模型场景落地,字节跳动自主研发的豆包大模型将通过火山

“高度复杂、碎片化程度高、跨领域”一直是交通行业数智化升级路上的首要痛点。近日,由中科视语、西安市雁塔区政府、西安未来人工智能计算中心联合打造的参数规模千亿级的“秦岭·秦川交通大模型”,面向智慧交通领域,为西安及其周边地区打造智慧交通创新支点。 “秦岭·秦川交通大模型”结合西安当地海量开放场景下的交通生态数据、中科视语自研的原创先进算法以及西安未来人工智能计算中心升腾AI的强大算力,为路网监测、应急指挥、养护管理、公众出行等智慧交通全场景带来数智化变革。交通管理在不同城市有不同的特点,不同道路的交

一、TensorRT-LLM的产品定位TensorRT-LLM是NVIDIA为大型语言模型(LLM)开发的可扩展推理方案。它基于TensorRT深度学习编译框架构建、编译和执行计算图,并借鉴了FastTransformer中高效的Kernels实现。此外,它还利用NCCL实现设备间的通信。开发者可以根据技术发展和需求差异,定制算子以满足特定需求,例如基于cutlass开发定制的GEMM。TensorRT-LLM是NVIDIA官方推理方案,致力于提供高性能并不断完善其实用性。TensorRT-LL

4月4日消息,日前,国家网信办公布已备案大模型清单,中国移动“九天自然语言交互大模型”名列其中,标志着中国移动九天AI大模型可正式对外提供生成式人工智能服务。中国移动表示,这是同时通过国家“生成式人工智能服务备案”和“境内深度合成服务算法备案”双备案的首个央企研发的大模型。据介绍,九天自然语言交互大模型具有行业能力增强、安全可信、支持全栈国产化等特点,已形成90亿、139亿、570亿、千亿等多种参数量版本,可灵活部署于云、边、端不同场

一、背景简介首先来介绍一下云问科技的发展历程。云问科技公...2023年,正是大模型盛行的时期,很多企业认为已经大模型之后图谱的重要性大大降低了,之前研究的预置的信息化系统也都不重要了。不过随着RAG的推广、数据治理的盛行,我们发现更高效的数据治理和高质量的数据是提升私有化大模型效果的重要前提,因此越来越多的企业开始重视知识建设的相关内容。这也推动了知识的构建和加工开始向更高水平发展,其中有很多技巧和方法可以挖掘。可见一个新技术的出现,并不是将所有的旧技术打败,也有可能将新技术和旧技术相互融合后

如果试题太简单,学霸和学渣都能考90分,拉不开差距……随着Claude3、Llama3甚至之后GPT-5等更强模型发布,业界急需一款更难、更有区分度的基准测试。大模型竞技场背后组织LMSYS推出下一代基准测试Arena-Hard,引起广泛关注。Llama3的两个指令微调版本实力到底如何,也有了最新参考。与之前大家分数都相近的MTBench相比,Arena-Hard区分度从22.6%提升到87.4%,孰强孰弱一目了然。Arena-Hard利用竞技场实时人类数据构建,与人类偏好一致率也高达89.1%

6月13日消息,据字节旗下“火山引擎”公众号介绍,小米旗下人工智能助手“小爱同学”与火山引擎达成合作,双方基于豆包大模型实现更智能的AI交互体验。据悉,字节跳动打造的豆包大模型,每日能够高效处理数量多达1200亿个的文本tokens、生成3000万张内容。小米借助豆包大模型提升自身模型的学习与推理能力,打造出全新的“小爱同学”,不仅更加精准地把握用户需求,还以更快的响应速度和更全面的内容服务。例如,当用户询问复杂的科学概念时,&ldq
