首页 科技周边 人工智能 让机器拟人化,从“人工智障”到“人工智能”

让机器拟人化,从“人工智障”到“人工智能”

Jun 03, 2023 am 11:34 AM
人工智能 人工智障 机器拟人化

5月27日,创业黑马在北京举办 “2023跃迁•黑马AIGC峰会”。此次大会的主题为“预见新世界,构建新格局”。有“AI专家”之称的卡耐基梅隆大学计算机学院前副院长、达沃斯世界经济论坛(WEF)计算机全球未来理事会前主席贾斯汀•卡塞尔,以及360集团、智源研究院、昆仑万维、云知声、蓝色光标、万兴科技、知道创宇等众多行业内企业高层到场,与上千位参会者进行了深入交流。

在峰会现场,云知声创始人、CEO 黄伟分享了 《通向智享未来之路》主题。

以下为分享内容整理:

开始我们希望按照专家的方式去做,希望交给机器一些方法论,十年前,机器开始从错误反馈里学习。这都是在过去人工智能技术里的大概阶段和路径。

今天OpenAI推出了ChatGPT和预训练模型,整个智能变得更加拟人化,首先我们用非常强大的算力阅读了全世界已知的所有文本,训练形成了大模型。它特别像婴儿大脑,可能有几百亿、上千亿的参数,和人脑不同的是,婴儿最多只是遗传了父母的外表和性格等,但大模型的大脑遗传了知识,这只是初始状态,接下来会通过微调等各种方式,像小孩在成长过程中会有各种教育,整个大模型的演进更加拟人化。

这是整个人工智能的变化。

今天的AGI和之前有什么本质变化?2022年12月份之前,整个人工智能还是一种鉴别式人工智能,做判断题、专用系统和智能模块,做一些特定任务。一方面人工智能的表现并不是那么智能,常被别人诟病“你们提供的是人工智障”,以至于过去人工智能的能力天花板较低。

第二,在很多场景里,客户的需求是千差万别的,但人工智能的能力没那么强,很多公司和团队用各种定制去满足。人工智能企业并不像高科技公司,在过去十年里,只能做鉴别式AI是手工作坊的时代。但现在有了大模型,有更加强大的通用能力,人工智能开始进入工业化时代。

有了新的生成能力、涌现能力,用一个模型就能解决很多场景下的不同问题。今天这个时代,人工智能大模型就是发电机,在发动机没有发明之前,中东国家并没有那么富裕,石油的价值没那么大。就像今天可以把数据变成燃料和能力,用这个能力赋能千行百业。

云知声为什么能够在短时间推出自研大模型?

2016年看到AlphaGo,我们把医疗产品在医院里落地,帮助北京协和医院的医生,极大提高工作效率。在医院这个场景里,只是效率工具是不够的,人工智能真正的智能是认知智能,Transformer是2017年提出来的,认知智能的背后需要比较强大的算力。

有了这些铺垫,无论从学术还是工程化方面,积累了很多经验。这个经验对于个人来讲是你谋生的能力,但是对于公司来说是在市场上胜出的核心竞争力。把ChatGPT框架看了之后,发现没有一项是新的,都是一些已有的工程化组合,我们很快把这种能力结合,投入到大模型研发中。

让机器拟人化,从“人工智障”到“人工智能”

我们在三天前,发布了商业大模型,名字叫山海。把预训练、指令微调、基于人反馈的增强学习全部跑通,看到了期待已久的涌现能力。那时候团队就在想是不是要给它起个名字,那段时间我在频繁出差,觉得名字还挺好的。海是波澜壮阔,有容乃大,体现出大模型的无限生成能力,山是高山仰止,我们知道什么能说、什么不能说,这恰恰是既要强调大模型的生成能力,又要强调大模型的安全合规问题。

有一个很有意思的现象,大家都在谈大模型,国内对大模型的关注是在春节后,但大家都不谈这个事,心里都没底。到今天为止,有一种观点这件事情只有技术还不能做,哪怕人都到位了,但训练成本很大,是极其烧钱的。大模型不是科学革命、不是发明了新的算法,是把已有的算法组合在一起做大,大都是有代价的,当然还有很多工程在里面。观点是对的。

反过来讲,如果认为未来10-20年大模型是很大的机会,BAT投不进去了,就放弃了,我认为还是有机会的。

云知声在过去的几年里,并不需要特别牛的科学家,我甚至认为这个事就不是科学家干的事情,科学家没有玩过那么多算力,也不知道场景在哪里,所以结果一定是不好的。有场景的厂商反而是最有可能成功的。

起山海这个名字,还有一个意思,所爱隔山海,山海皆可平。

山海之力是十项全能。生成能力是非常主观的,真正在场景落地的时候,语言理解能力很重要,为什么以前觉得是人工智障,因为缺乏理解和代码能力。代码能力的提升能够有助提升大模型的推理能力,输出结果一定要符合国内的法律法规甚至道德价值观等。我们还采用GPT-4 插件的架构,帮助企业和客户,从数据的优选、模型训练、模型部署等一条龙服务。

为什么大模型具备复杂的逻辑推理能力?我们今天做到了,但不知道为什么,到底是500亿参数还是1000亿参数更好,却不好说,可能1000亿参数里面神经元还没有被激活。

另外还有医疗,一开始我们在做大模型,很多人以为云知声做的是垂直行业模型,并不是,我们是做行业应用。挑战了一个最严肃的场景——医疗,通过预训练阶段,收集了很多医学的文献、专著、书籍,病案,积累了几千万真实标注的数据,这些数据可以转化成我们的微调数据。

另外在2019年还获得了北京市科技进步一等奖,获奖项目就是大规模知识图谱构建关键技术及应用,我们有国内最大规模之一的医疗知识图谱,我们把知识图谱分解成知识插件嵌入到大语言模型中,使得大模型变成医疗领域的专家。

MedQA是一个非常权威的医疗知识问答测试集,包括谷歌的Med-PaLM,ChatGPT和GPT-4都在这个测试集上公布了它们的评测结果,山海前不久的评测中做到了81分,大大超过了GPT-4的71分。通过领域增强以后,能够把大模型变成某个领域的专家。还有一个数字可以做横向对比,医学院毕业生要通过临床执业医师考试目前已知的AI最高分数是456分,山海大概考了511分,这就是大模型通过领域增强以后获得的超强能力。

想做大模型还是挺难的,门槛非常高,除了需要很多钱之外、优秀的算法工程师和算法之外,还需要很多能力,我们把它总结为山海之功。直观来讲,大模型本身就是大数据集,大模型是工程师的活儿,云知声为什么能够用几个月的时间就能做出一个非常权威的客观的评测数据,我们内部去评,不只在医疗,在通用领域方面,云知声都是最好之一。

算力平台不是买多少卡来插就行了,云知声差不多有200P算力,利用集群的效率达到业内最顶尖的水平,可以用相对比较少的卡,很快速地训练出我们的模型。

我们目前GPU集群的利用率能做到50%,大模型需要多卡,目前业内的水平大概是42%。大模型还要做到3D混合并行训练。什么是3D?就是模型的并行化、数据的并行化、流水线的并行化,要把任务分离到很多不同机器的不同卡里分别计算,最后能快速得到响应的结果。另外在模型推理里得到了很多优化,推理的速度提高了5倍,怎么样把训练卡和推理卡分开,训练卡是A800,推理卡是在一张单卡A6000上就可以实现快速推理。

另外数据很重要,数据规模、数据多样性、数据高质量,我们现在能做到支持10T级别的快速去重,ChatGPT的训练数去是45T,但是优选之后用了几百G的数据来训练。

有了这些能力之后,就能够基于Atlas和UniDataOps的能力,可以把山海的能力和行业客户更好地提供服务。

智慧物联也是公司的一块重要业务,我们有很多落地,过去用的效果确实不太好,希望有了山海之后,用大模型把已有的物联网的产品全部做一遍。

医疗是我们看好的方向。以前的医疗方向,产品主要有两个方面,一是不用手敲键盘,直接拿麦克风说话,极大提升了医生的工作效率,把病历输入时间从3个小时缩短到了1个小时;二是有了病历之后,还有一套系统,通过AI大脑审核病历,审核病历有没有错误,现在有了AI大模型能力之后能够做什么呢?

山海的愿景是通过人工智能打造互联、直观的世界,以前对人工智能的定义是让机器服从人,今天希望机器更加拟人。人和物的沟通交流会变的更加直观,新的能力会带来新的产品、新的商业模式,非常愿意和在座各位共同迎接大模型的新时代。

扫码加入黑马创业者交流群

↓↓↓

扫描下方二维码

加入黑马AIGC产业营

读懂AIGC底层逻辑,一步接入产业未来

↓↓↓

分享、赞和在看,完成三连击,把好的内容传递给更多需要的人。

更多精彩内容,尽在i黑马视频号

↓↓↓

关注黑马传播矩阵,get更多精彩内容

↓↓ ↓

以上是让机器拟人化,从“人工智障”到“人工智能”的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles