目录
有哪些类型的数据?
数据搜索引擎和存储库
政府和政府间组织的数据集
图像数据
声音数据
文本数据
其他和杂项数据集
首页 科技周边 人工智能 盘点20多个强大且免费的数据源,任何人都能以此来构建AI

盘点20多个强大且免费的数据源,任何人都能以此来构建AI

Jun 05, 2023 pm 02:29 PM
数据源 机器学习

当我们谈论现今商业和社会中的人工智能时,实际上我们指的是机器学习。机器学习是一种应用,通过使用算法(一组指令)变得越来越擅长执行某项特定任务,因为它接触了越来越多与这项任务相关的数据。

这些任务可以是任何任务,从回答问题、创建文本或图像(如ChatGPT或Dall-E等应用所能做的)到识别图像(计算机视觉)或者把自动驾驶汽车从A地导航到B地。

企业想要训练自己的机器学习算法以自动化完成日常任务,都需要数据源来支持这些任务。

盘点20多个强大且免费的数据源,任何人都能以此来构建AI

有哪些类型的数据?

企业数据通常分为两类——内部数据和外部数据。

  • 内部数据是企业组织自己从运营过程中收集的数据,这通常包括财务数据、客户反馈数据、人力资源数据、运营数据、和其他更多来源的数据。某个组织在监控其自身运营过程中收集的数据被称为专有数据,这种数据很有价值,因为它提供了有关特定业务的信息。
  • 外部数据是来自组织外部来源的数据,通常是从如下所列的第三方数据源收集而来。如果数据可供任何人免费使用,则称为开放数据。

除此之外,数据还可以分为结构化、非结构化或半结构化数据。

  • 结构化数据是可以很好地、整齐地放入表格中的信息——例如,显示企业销售的产品、时间、地点、价格的销售数据就是内部结构化数据。或者,企业会选择分析历史市场数据和经济指标来预测他们面向市场的未来走势(结构化的外部数据)。
  • 非结构化数据则是其他一切,例如图片、视频、文本和社交媒体内容,当然也可以包含有价值的洞察,但更难于分析。不过,AI已经被证明对于从非结构化数据中提取意义特别有用处。例如,图像识别算法可以通过分析店内闭路电视图像(内部非结构化数据)来告诉企业有关客户行为的有用信息,还可以通过分析社交媒体上发布的与业务相关的图像(非结构化外部数据)来找到有价值的洞察。

所幸的是,数据无处不在。政府、研究机构、私营公司、非政府组织都免费提供数据用于研究甚至商业目的。因此,这里罗列了一些2023年可用的免费在线数据最佳来源。

数据搜索引擎和存储库

  • Google Dataset Search——这实际上是谷歌编目的数据集的搜索引擎;使用这个搜索引擎可以查找你可能需要的几乎所有内容的数据。
  • AWS Open Data Search——另一个数据集搜索引擎,由亚马逊的AWS提供。
  • Microsoft Research Open Data——由Microsoft收集的免费、开放的数据集,主要以科学为重点。
  • UCI Machine Learning Repository——由加州大学欧文分校策划和维护的600多个开放数据集的存储库,可用于训练机器学习算法。
  • Kaggle Datasets——在线数据科学平台Kaggle还提供了精选的数据集目录,涵盖从大学排名到谷歌搜索趋势、零售销售、在线电影评论和犯罪统计数据的所有内容。
  • Reddit R/Datasets——由在线社区网站Reddit的用户提交的庞大数据集,涵盖了数百个主题。

政府和政府间组织的数据集

  • Data.Gov——美国政府提供的开放数据门户,托管了政府机构发布的一百万个数据集中的近四分之一数据。
  • Data.Census.Gov——如果你专门寻找美国的人口统计数据,这是一个很好的起点!
  • Data.EU——欧盟的开放数据门户,包含了来自欧盟组织的数据和成员国政府的数据。
  • Data.gov.uk——英国政府机构发布的开放数据集。
  • World Health Organization Data——与全球健康和福祉相关的数据集。
  • World Bank Open Data——与经济发展、国际金融市场、社会指标和环境问题相关的数据集。

图像数据

  • Google Open Images——数以百万计的图像以各种方式分类和标记,用于训练许多不同类型的计算机视觉算法。
  • ImageNet Open Dataset——另一个由标记图像组成的数据集,可免费用于非商业机器学习应用。
  • COCO Dataset——Common Objects in Context (COCO)数据集中包含了超过200000张图像,这些图像被选择用于训练对象检测和字幕算法。

声音数据

  • Mozilla Common Voice——一个开放的录音数据集,可用于训练任何涉及语音的AI应用。
  • Audioset——另一个由谷歌策划的数据集,这个数据集专注于声音,包含数十万个10秒样本,这些样本被分解为乐器、车辆和人声等类别。
  • Million Song Dataset——来自一百万个当代流行音乐曲目的样本和元数据。

文本数据

  • Wikidata——多种不同格式的维基百科文章的数据库下载。
  • Common Crawl——一个从万维网上抓取的开放数据存储库,最知名的用途就是对ChatGPT和其他聊天机器人的GPU大型语言模型进行训练。

其他和杂项数据集

  • Amazon Reviews——包含约3500万条亚马逊产品评论的数据库,包括产品信息和评级。
  • Waymo Open Dataset——Alphabet自动驾驶子公司Waymo公开了通过自动驾驶车辆收集的大量数据,包括来自摄像头和LiDAR传感器数据。
  • Apolloscape Dataset——更多的自动驾驶数据,是由百度开源Apollo平台提供的。

以上是盘点20多个强大且免费的数据源,任何人都能以此来构建AI的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通透!机器学习各大模型原理的深度剖析! 通透!机器学习各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

See all articles