目录
工作机制受到人类启发
训练时间最多缩短32倍
首页 科技周边 人工智能 AI模仿人脑记忆模式,游戏成绩大涨29.9%

AI模仿人脑记忆模式,游戏成绩大涨29.9%

Jun 06, 2023 am 11:13 AM
模型 效率

我们常常被教育的做事“三思而后行”,充分运用积累过的经验,现在这句话对AI也有所启发了。

传统的决策AI模型由于遗忘效应的存在不能有效积累经验,但一项由华人主导的研究改变了AI的记忆方式。

新的记忆方式模仿了人类大脑,有效地提高了AI积累经验的效率,从而将AI打游戏的成绩提高了29.9%

研究团队由六人组成,分别来自米拉-魁北克AI研究院和微软蒙特利尔研究所,其中有四名是华人。

他们将成果命名为的带有记忆的决策Transformer(DT-Mem)。

相比传统的决策模型,DT-Mem适用广泛性更强,模型运算的效率也更高。

除了应用效果,DT-Mem的训练时间也从最短200小时缩短至50小时。

同时,团队还提出了一种微调方式,让DT-Mem能够适应未训练过的新场景。

微调后的模型,面对没有学习过的游戏,也能拥有不错的表现。

工作机制受到人类启发

传统的决策模型基于LLM进行设计,采用隐性记忆,其性能依赖于数据和计算。

隐性记忆是无意识产生而非刻意记住的,因而也无法有意识地进行调用。

说得通俗一些,就是明明有关内容就存储在那里,但是模型却并不知道它的存在。

隐性记忆的这一特点决定了传统模型存在遗忘现象,导致其工作效率往往不高。

遗忘现象表现为,在学了新的问题解决方式之后,模型可能会将旧的内容忘记,哪怕新旧问题是同一类型。

而人脑采用分布式记忆存储方式,记忆的内容被分散存储在大脑中的多个不同区域。

这种方式有助于有效地管理和组织多种技能,从而减轻遗忘现象。

受此启发,研究团队提出了一个内部工作记忆模块来存储、混合和检索不同下游任务的信息。

具体而言,DT-Mem由Transformer、记忆模块和多层感知(MLP)模块三部分组成。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

DT-Mem的Transformer模仿了GPT-2的架构,但删去了注意力机制后的前馈层。

同时,GPT-2中的MLP模块被拆分成了独立组件,作为DT-Mem的一部分。

在二者之间,研究团队引入了一个工作记忆模块,用于存储和处理中间信息。

这一结构是受到神经图灵机的启发,其中的记忆被用于推断多种算法。

记忆模块分析Transformer输出的信息,并决定其存储位置以及与已有信息的整合方式。

此外,该模块还要考虑这些信息在今后做出决策的过程当中如何使用。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

这些任务大概通过五个步骤来完成,记忆模块首先被初始化为一个随机矩阵。

然后是对输入信息的整理,这一步并不是将信息传给Transformer,而是以元组形式存入同一空间。

之后就要确定存储位置。人类通常会将相关的信息存储到同一位置,DT-Mem也是基于这一原理。

最后两步——记忆更新和检索是记忆模块的核心,也是整个DT-Mem中最重要的环节。

记忆更新,即对已有信息进行编辑替换,以确保信息能根据任务需要及时更新。

这一步中DT-Mem会计算擦除和写入两个向量,进而判断如何与已有数据混合。

记忆检索则是对已有信息的访问和恢复,在需要做出决策时及时调取相关有用信息。

投入实际使用之前,DT-Mem还要经历预训练过程。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

而对于DT-Mem的微调,团队也提出了一种新的方式。

由于使用的是基于任务进行标记的数据,这种微调能够帮助DT-Mem适应新的任务。

这一过程基于低秩适应(LoRA)进行,在已有的矩阵中加入低秩元素。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

训练时间最多缩短32倍

为了测试DT-Mem的决策能力,研究团队让它玩了几款游戏。

游戏一共有5款,全部来自Atari公司。

同时,团队还测试了传统模型M[ulti-game]DT的表现作为参照。

结果,DT-Mem在其中4款游戏里的最好成绩均胜过MDT。

具体而言,DT-Mem比MDT的DQN标准化分数提高了29.9%。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

但是,DT-Mem的参数量只有20M,仅是MDT(200M参数)的10%。

这样的表现,说是四两拨千斤一点也不过分。

除了表现优异,DT-Mem的训练效率也完爆MDT。

13M参数量版本的MDT需要200小时进行训练,而20M的DT-Mem却只需要50个小时。

如果和200M的版本相比,训练时间足足缩短了32倍,表现却更优异。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

而针对团队提出的微调方式的测试结果也表明,这种微调增强了DT-Mem适应未知情景的能力。

需要说明的是,下表中用来测试的游戏对于MDT来说是已知的,因此MDT的表现在这一轮当中不作为衡量依据。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

除了玩游戏,团队还使用了Meta-World ML45基准对DT-Mem进行了测试。

这次用作参照的是H[yper]DT和P[romot]DT。

结果显示,未经微调的模型当中,DT-Mem成绩比HDT高出8个百分点。

需要说明的是,这里测试的HDT本身参数量虽然只有69K,但需依赖于2.3M参数量的预训练模型,因此实际的参数量是DT-Mem(147K)的10余倍。

AI模仿人脑记忆模式,游戏成绩大涨29.9%

论文地址:https://arxiv.org/abs/2305.16338

以上是AI模仿人脑记忆模式,游戏成绩大涨29.9%的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24) 牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24) Apr 23, 2024 pm 01:20 PM

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对

See all articles