目录
ThinkGPT的主要特点
安装
在Python脚本中使用ThinkGPT的第一步
实际示例
总结
首页 科技周边 人工智能 探索ThinkGPT:将AI转变为强大思维机器的前沿Python库

探索ThinkGPT:将AI转变为强大思维机器的前沿Python库

Jun 06, 2023 pm 02:13 PM
模型

ThinkGPT是一款创新的Python库,它增强了大型语言模型的能力,使它们能够更有效地思考、推理和行动。如果你渴望将ThinkGPT集成到你的Python脚本中,并利用它先进的功能,那么请阅读本文。本文将指导你完成在Python项目中使用ThinkGPT的第一步。

我们将探索ThinkGPT的核心功能,包括其先进的记忆能力、自我完善机制和高阶推理能力。你将能够发现这个创新的库如何改变AI开发局面的,以及学习如何利用它的力量增强自己的项目。

ThinkGPT托管在GitHub上。代码库可以在以下网址中找到:https://github.com/alaeddine-13/thinkgpt。

探索ThinkGPT:将AI转变为强大思维机器的前沿Python库

ThinkGPT的主要特点

  1. 记忆:ThinkGPT使大型语言模型(LLM)能够记住经验并学习新的概念。
  2. 自我完善:该功能允许模型通过解决批评、修复问题和完善其理解来改进生成的内容。
  3. 抽象:鼓励LLM从示例或观察中概括出规则,帮助创造压缩的知识,更好地适应模型有限的上下文长度。
  4. 推理:使LLM能够根据现有的信息做出有根据的猜测。
  5. 自然语言条件:用户可以轻松地用自然语言表达任务和条件,使模型能够做出智能决策。
  6. 易于设置和Pythonic API:由于DocArray的存在,ThinkGPT提供了一个极其简单的设置过程和一个Pythonic API。

安装

安装ThinkGPT很简单,可以使用pip进行安装:

pip install git+https://github.com/alaeddine-13/thinkgpt.git
登录后复制

该命令将直接从GitHub代码库安装ThinkGPT库。

在Python脚本中使用ThinkGPT的第一步

安装完成后,你就可以开始在Python脚本中使用ThinkGPT。要做到这一点,只需从thinkgpt.llm模块中导入ThinkGPT类并创建该类的一个新实例即可:

from thinkgpt.llm import ThinkGPT llm = ThinkGPT(model_name="gpt-3.5-turbo")
登录后复制

这段代码片段使用指定的模型(在本例中为“gpt-3.5-turbo”)初始化了一个新的ThinkGPT实例。

有了ThinkGPT实例,你现在可以使用memorize()方法来教授你的AI模型新的概念或事实:

llm.memorize(['DocArray is a library for representing, sending, and storing multi-modal data.'])
登录后复制

为了调用记忆的信息,你可以使用remember()方法:

memory = llm.remember('DocArray definition')
登录后复制

一旦AI模型学习了一些信息,你就可以使用predict()方法基于记忆数据进行预测或回答问题:

llm.predict('what is DocArray ?', remember=memory)
登录后复制

这段代码片段使用remember()方法来检索记忆信息,并将其反馈给predict()方法来回答问题。

实际示例

ThinkGPT附带了一些易于理解的使用示例。相应的Python脚本可以在代码库的example文件夹中找到:

探索ThinkGPT:将AI转变为强大思维机器的前沿Python库

让我们深入研究一下其中提供的一个示例:replay_expand_memory.py:

from thinkgpt.llm import ThinkGPT llm = ThinkGPT(model_name="gpt-3.5-turbo") # 加载旧内存 old_memory = [ "Klaus Mueller is writing a research paper", "Klaus Mueller enjoys reading a book on gentrification", "Klaus Mueller is conversing with Ayesha Khan about exercising" ] # 教给LLM旧的记忆 llm.memorize(old_memory) # 在旧记忆的基础上诱发反思 new_observations = llm.infer(facts=llm.remember()) print('new thoughts:') print('\n'.join(new_observations)) llm.memorize(new_observations)
登录后复制

在这个ThinkGPT示例脚本中,目标是基于Klaus Mueller的现有信息使用ThinkGPT库诱导新的思考或观察。

  1. 首先,该脚本从thinkgpt.llm模块中导入ThinkGPT类。
  2. 创建一个新的ThinkGPT实例,并使用“gpt-3.5-turbo”模型进行初始化。
  3. 定义old_memory变量,其中包含有关Klaus Mueller的三个陈述,表示以前的知识。
  4. 使用memorize()方法来教授大型语言模型(LLM)存储在old_memory中的信息。
  5. 调用infer()方法,并将facts参数设置为remember()方法的结果。这会指示LLM基于先前记忆的信息诱导新的观察或思考。
  6. 新诱导出的观察结果在“new thoughts:”标签下输出到控制台。
  7. 最后,再次调用memorize()方法,将新的观察结果存储在LLM的内存中,使其能够在未来的交互中建立起对Klaus Mueller的理解。

在执行脚本并查看结果之前,我们需要获取OpenAI API密钥并设置相应的环境变量OPENAI_API_KEY的密钥值。

要获取OpenAI API密钥,请按照以下简单步骤操作:

  • 请访问OpenAI网站https://www.openai.com/。
  • 如果没有帐户,请注册一个帐户。在首页右上角点击“注册”,并按照注册流程操作。
  • 注册或登录后,通过点击页面顶部的“API”或访问https://www.openai.com/api/来导航到API部分。
  • 查看可用的API定价计划,并选择适合你需求的计划。某些计划可能提供带有有限使用的免费访问权限,而其他计划根据你的要求和预算提供不同级别的访问权限。
  • 选择一个计划后,将提供你的唯一API密钥。请确保保密,因为它授予你的账户使用限制和特权的API访问权限。 在命令行中使用以下命令来设置OpenAI API密钥:
export OPENAI_API_KEY="YOUR OPENAI API KEY"
登录后复制

现在我们已经准备好执行脚本了,只需输入以下命令:

python replay_expand_memory.py
登录后复制

然后,你应该能够看到类似于以下的结果:

探索ThinkGPT:将AI转变为强大思维机器的前沿Python库

总结

ThinkGPT是一款强大的Python库,它通过添加先进的记忆、自我完善、抽象和推理功能,增强了大型语言模型的能力。它对用户友好的安装过程和Pythonic API使它成为许多AI项目的有价值的补充。通过探索本文提供的实际示例,你可以利用ThinkGPT的能力,彻底改变你的AI思考方式、得出结论和采取行动的方式。

以上是探索ThinkGPT:将AI转变为强大思维机器的前沿Python库的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt 时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt Mar 18, 2024 am 09:20 AM

今天我想分享一个最新的研究工作,这项研究来自康涅狄格大学,提出了一种将时间序列数据与自然语言处理(NLP)大模型在隐空间上对齐的方法,以提高时间序列预测的效果。这一方法的关键在于利用隐空间提示(prompt)来增强时间序列预测的准确性。论文标题:S2IP-LLM:SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting下载地址:https://arxiv.org/pdf/2403.05798v1.pdf1、问题背景大模型

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles