多模态可控图片生成统一模型来了,模型参数、推理代码全部开源
- 论文地址:https://arxiv.org/abs/2305.11147
- 代码地址:https://github.com/salesforce/UniControl
- 项目主页:https://shorturl.at/lmMX6
引言:Stable Diffusion 表现出了强大的视觉生成能力。然而,它们在生成具有空间、结构或几何控制的图像方面常常表现不足。ControlNet [1] 和 T2I-adpater [2] 等工作实现针对不同模态的可控图片生成,但能够在单一统一的模型中适应各种视觉条件,仍然是一个未解决的挑战。UniControl 在单一的框架内合并了各种可控的条件到图像(C2I)任务。为了使 UniControl 有能力处理多样的视觉条件,作者引入了一个任务感知的 HyperNet 来调节下游的条件扩散模型,使其能够同时适应不同的 C2I 任务。UniControl 在九个不同的 C2I 任务上进行训练,展示了强大的视觉生成能力和 zero-shot 泛化能力。作者已开源模型参数和推理代码,数据集和训练代码也将尽快开源,欢迎大家交流使用。
图 1: UniControl 模型由多个预训练任务和 zero-shot 任务组成
动机:现有的可控图片生成模型都是针对单一的模态进行设计,然而 Taskonomy [3] 等工作证明不同的视觉模态之间共享特征和信息,因此本文认为统一的多模态模型具有巨大的潜力。
解决:本文提出了 MOE-style Adapter 和 Task-aware HyperNet 来实现 UniControl 中的多模态条件生成能力。并且作者建立了一个新的数据集 MultiGen-20M,包含 9 大任务,超过两千万个 image-condition-prompt 三元组,图片尺寸≥512。
优点: 1) 更紧凑的模型 (1.4B #params, 5.78GB checkpoint),更少的参数实现多个 tasks。2) 更强大的视觉生成能力和控制的准确性。3) 在从未见过的模态上的 zero-shot 泛化能力。
1.介绍
生成式基础模型正在改变人工智能在自然语言处理、计算机视觉、音频处理和机器人控制等领域的交互方式。在自然语言处理中,像 InstructGPT 或 GPT-4 这样的生成式基础模型在各种任务上都表现优异,这种多任务处理能力是最吸引人的特性之一。此外,它们还可以进行 zero-shot 或 few-shot 的学习来处理未见过的任务。
然而,在视觉领域的生成模型中,这种多任务处理能力并不突出。虽然文本描述提供了一种灵活的方式来控制生成的图像的内容,但它们在提供像素级的空间、结构或几何控制方面往往不足。最近热门研究例如 ControlNet,T2I-adapter 可以增强 Stable Diffusion Model (SDM) 来实现精准的控制。然而,与可以由 CLIP 这样的统一模块处理的语言提示不同,每个 ControlNet 模型只能处理其训练过的特定模态。
为了克服先前工作的限制,本文提出了 UniControl,一个能同时处理语言和各种视觉条件的统一扩散模型。UniControl 的统一设计可以享受到提高训练和推理效率以及增强可控生成的优点。另一方面,UniControl 从不同视觉条件之间的固有联系中获益,来增强每个条件的生成效果。
UniControl 的统一可控生成能力依赖于两个部分,一个是 "MOE-style Adapter",另一个是 "Task-aware HyperNet"。MOE-style Adapter 有 70K 左右的参数,可以从各种模态中学习低级特征图,Task-aware HyperNet 可以将任务指令作为自然语言提示输入,并输出任务 embedding 嵌入下游的网络中,来调制下游模型的参数来适应不同模态的输入。
该研究对 UniControl 进行预训练,以获得多任务和 zero-shot 学习的能力,包括五个类别的九个不同任务:边缘 (Canny, HED, Sketch),区域映射 (Segmentation, Object Bound Box),骨架 (Human Skeleton),几何图 (Depth, Normal Surface) 和图片编辑 (Image Outpainting)。然后,该研究在 NVIDIA A100 硬件上训练 UniControl 超过 5000 个 GPU 小时 (当前新模型仍在继续训练)。并且 UniControl 展现出了对新任务的 zero-shot 适应能力。
该研究的贡献可以概括如下:
- 该研究提出了 UniControl,一个能处理各种视觉条件的统一模型 (1.4B #params, 5.78GB checkpoint),用于可控的视觉生成。
- 该研究收集了一个新的多条件视觉生成数据集,包含超过 2000 万个图像 - 文本 - 条件三元组,涵盖五个类别的九个不同任务。
- 该研究进行了实验,证明了统一模型 UniControl 由于学习了不同视觉条件之间的内在关系,超过了每个单任务的受控图像生成。
- UniControl 表现出了以 zero-shot 方式适应未见过的任务的能力,展现了其在开放环境中广泛使用的可能性和潜力。
2. 模型设计
图 2: 模型结构。为了适应多个任务,该研究设计了 MOE-style Adapter,每个任务大约有 70K 个参数,以及一个任务感知 Task-aware HyperNet(约 12M 参数)来调制 7 个零卷积层。这个结构允许在一个单一的模型中实现多任务功能,既保证了多任务的多样性,也保留了底层的参数共享。相比于等效的堆叠的单任务模型(每个模型大约有 1.4B 参数),显著地减少了模型的大小。
UniControl 模型设计确保了两个性质:
1) 克服来自不同模态的低级特征之间的不对齐。这有助于 UniControl 从所有任务中学习必要的和独特的信息。例如,当模型将分割图作为视觉条件时,可能会忽略 3D 信息。
2) 能够跨任务学习元知识。这使得模型能够理解任务之间的共享知识以及它们之间的差异。
为了提供这些属性,模型引入了两个新颖的模块:MOE-style Adapter 和 Task-aware HyperNet。
MOE-style Adapter 是一组卷积模块,每个 Adapter 对应一个单独的模态,灵感来自专家混合模型(MOE),用作 UniControl 捕获各种低级视觉条件的特征。此适配器模块具有约 70K 的参数,计算效率极高。此后视觉特征将被送入统一的网络中处理。
Task-aware HyperNet 则是通过任务指令条件对 ControlNet 的零卷积模块进行调节。HyperNet 首先将任务指令投影为 task embedding,然后研究者将 task embedding 注入到 ControlNet 的零卷积层中。在这里 task embedding 和零卷积层的卷积核矩阵尺寸是对应的。类似 StyleGAN [4],该研究直接将两者相乘来调制卷积参数,调制后的卷积参数作为最终的卷积参数。因此每个 task 的调制后零卷积参数是不一样的,这里保证了模型对于每个模态的适应能力,除此之外,所有的权重是共享的。
3. 模型训练
不同于 SDM 或 ControlNet,这些模型的图像生成条件是单一的语言提示,或如 canny 这样的单一类型的视觉条件。UniControl 需要处理来自不同任务的各种视觉条件,以及语言提示。因此 UniControl 的输入包含四部分: noise, text prompt, visual condition, task instruction。其中 task instruction 可以自然的根据 visual condition 的模态得到。
有了这样生成的训练配对,该研究采用 DDPM [5] 对模型进行训练。
4. 实验结果
图 6: 测试集视觉对比结果。测试数据来自于 MSCOCO [6] 和 Laion [7]
与官方或该研究复现的 ControlNet 对比结果如图 6 所示,更多结果请参考论文。
5.Zero-shot Tasks 泛化
模型在以下两个场景中测试 zero-shot 能力:
混合任务泛化:该研究考虑两种不同的视觉条件作为 UniControl 的输入,一个是分割图和人类骨骼的混合,并在文本提示中添加特定关键词 "背景" 和 "前景"。此外,该研究将混合任务指令重写为结合的两个任务的指令混合,例如 "分割图和人类骨骼到图像"。
新任务泛化:UniControl 需要在新的未见过的视觉条件上生成可控制的图像。为了实现这一点,基于未见过的和见过的预训练任务之间的关系估计任务权重至关重要。任务权重可以通过手动分配或计算嵌入空间中的任务指令的相似度得分来估计。MOE-style Adapter 可以与估计的任务权重线性组装,以从新的未见过的视觉条件中提取浅层特征。
可视化的结果如图 7 所示,更多结果请参考论文。
图 7: UniControl 在 Zero-shot tasks 上的可视化结果
6.总结
总的来说,UniControl 模型通过其控制的多样性,为可控视觉生成提供了一个新的基础模型。这种模型能够为实现图像生成任务的更高水平的自主性和人类控制能力提供可能。该研究期待和更多的研究者讨论和合作,以进一步推动这一领域的发展。
更多视觉效果
以上是多模态可控图片生成统一模型来了,模型参数、推理代码全部开源的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP
