成功定制人工智能模型的四个关键环节
随着ChatGPT和生成式人工智能的持续发展,人工智能可以实现的目标越来越明显。新用例和创新的加速,对行业来说是一个激动人心的时刻。然而,这些技术进入主流市场并达到能够达到为整个企业提供真正价值的易用性水平还需要时间。
幸运的是,对于那些渴望踏上自己的人工智能之旅但可能不知道从哪里开始的组织来说,人工智能模型已经存在了一段时间,现在相对更容易使用。例如,像谷歌、IBM、微软和其他大型科技公司已经创建并开发了人工智能模型,企业组织可以围绕自己的商用利益将这些模型应用到自己的工作流程中,如今使得人工智能的进入门槛比过去低得多。
缺点是,这些模型需要根据组织的特定需求进行定制。如果定制过程做得不正确,可能会消耗宝贵的资源和预算,并最终影响企业的成功。为了避免这种情况,在将人工智能模型应用于其工作流程之前,组织机构应仔细审查以下几点:
考虑基础架构
实现人工智能比安装计算机程序更困难。正确地做到这一点需要时间和资源。这个过程中的失误可能会导致不必要的成本——例如,评估数据的存储位置对于防止陷入昂贵的云模型非常重要。
但在组织评估如何应用人工智能模型之前,他们必须首先确定是否有正确的基础设施来启用和推动这些模型。组织往往缺乏培训和运营人工智能模型所需的基础设施。对于面临这种情况的组织来说,至关重要的是,他们要考虑利用现代基础设施来处理、扩展和存储为人工智能模型提供动力所需的大量数据。与此同时,数据处理也需要快速完成,才能在当今的数字世界中发挥作用,因此利用能够提供快速、强大性能的解决方案同样重要。例如,投资于能够解决人工智能数据管道多个阶段的高性能存储,可以在最大限度地减少放缓、加速开发和使人工智能项目能够扩展方面发挥关键作用。
验证用例
一旦现代基础设施奠定了基础,定制过程中的下一步就是确定人工智能模型的用例。这个用例应该是具体的,具有模型可以轻松实现的有形结果。如果识别一个用例是一个挑战,那么从小处着手,为人工智能模型争取一个特定的目的。在识别这些用例时,考虑您的理想结果也很重要,因为它可以为衡量模型是否实际正确运行提供基础。一旦模型开始实现这些目标,并在方法上变得更加有效和高效,组织就可以开始进一步开发其模型,并解决更复杂的问题。
数据准备
数据是人工智能模型运作的核心,但要想成功,数据必须首先做好准备,以确保准确的结果。数据准备可能很难管理,而且很难确保准确性。但如果没有适当的准备,模型可能会被输入“脏数据”或充满错误和不一致的数据,这可能会导致有偏见的结果,并最终影响人工智能模型的性能(例如效率降低和收入损失)。
为了防止脏数据,组织需要采取措施确保数据得到适当的审查和准备。例如,实施数据治理战略可能是一种非常有益的策略——通过开发定期检查数据的流程、创建和执行数据标准等,组织可以防止其人工智能模型出现代价高昂的故障。
数据训练
部署和维护训练人工智能模型所需的连续反馈回路对人工智能部署的成功至关重要。成功的团队经常应用类似DevOps(开发运营)的战术来动态部署模型,并保持训练和再培训人工智能模型所需的持续反馈回路。但是,实现连续的反馈回路是很难实现的。例如,不灵活的存储或网络基础架构可能无法跟上管道更改引起的不断变化的性能需求。随着流经模型的数据发生变化,模型性能也很难衡量。
投资于能够推动快速管道变革的灵活、高性能基础设施对于避免这些障碍至关重要。人工智能团队设置抽查或自动性能检查也至关重要,以避免成本高昂且令人讨厌的模型漂移。
人工智能是数据的众多目的地之一。尽管人工智能很重要,但我们能用人工智能做些什么才是真正重要的。现在,我们比以往任何时候都有更多的机会通过人工智能从我们的数据中构建和提取价值,这最终会以更高的效率和新的创新驱动真正的价值。
以上是成功定制人工智能模型的四个关键环节的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
