在客户服务领域,和ChatGPT有关的变革已经开始
近年来,越来越多的企业采用人工智能技术来自动化联络中心,以处理数百万客户的电话、聊天和短信。现在,ChatGPT的卓越沟通技巧正在与集成到业务特定系统例如内部知识库和CRM的关键能力相融合。
大规模语言模型(LLM)的应用可以增强自动化联系中心,使其能够像人工客服一样,从头到尾地解决客户请求,并已经取得了显著的成效。另一方面,随着越来越多的客户意识到ChatGPT的类人的功能,可以想象他们会开始对传统系统感到更加沮丧,这些传统系统往往需要他们等待45分钟才能更新其信用卡信息。
但不要害怕。虽然对早期采用者来说,使用人工智能来解决客户问题似乎已经过时了,但实际上,时机刚刚好。
LLM可以阻止客户满意度下跌
客户服务行业的满意度已降至几十年来的最低水平,原因是座位不足和需求增加。LLM的兴起势必使得人工智能成为每个试图重建客户忠诚度的董事会的核心议题。
那些转向昂贵的外包选择、或完全取消联络中心的企业突然间看到了一条可持续发展的道路。
蓝图已经画好。人工智能可以帮助实现呼叫中心的三个主要目标:在第一个环上解决客户问题,降低总体成本,减少座席的负担(并通过这样做增加座席的保留率)。
在过去几年里,企业级联络中心已经部署了人工智能来处理他们最常见的请求(例如,计费、账户管理,甚至呼出呼叫),而且这一趋势似乎将在2023年继续下去。
通过这样做,他们已经能够减少等待时间,使他们的座席能够专注于创收或增值电话,并从旨在使客户远离座席和解决方案的过时策略中解脱出来。
所有这些都可以节省成本,Gartner预测称,到2026年,人工智能的部署将使联络中心的成本降低800多亿美元。
LLM使自动化比以往任何时候都更容易、更好
LLM是在大量的公共数据集上训练的。这种对世界的广泛了解非常适合客户服务。他们能够准确地理解客户的实际需求,不受来电者话语方式或表述方式的影响。
LLM已被整合进现有的自动化平台中,有效提升了平台理解非结构化人类对话的能力,同时减少了错误的出现。这将带来更好的解决率、更少的对话步骤、更短的呼叫时间和更少的座席需求。
顾客可以用任意自然的句子与机器对话,包括提出多个问题,要求机器等待或通过文本发送信息。LLM的一个重要改进在于改进了呼叫解决方案,在不需要与座席交谈的情况下,让更多的客户得到了他们所需的答案。
LLM还大大减少了定制和部署人工智能所需的时间。有了合适的API,一个人手不足的联络中心可以在几周内启动并运行一个解决方案,而不必手动训练人工智能来了解客户可能提出的各种请求。
联系中心面临着巨大的挑战,必须同时满足严格的SLA指标并将呼叫持续时间保持在最低水平。有了LLM,他们不仅能接听更多的电话,还能端到端解决问题。
呼叫中心自动化减少了ChatGPT风险
虽然LLM给人留下了深刻的印象,但也有很多记录在案的不恰当的回答和“幻觉”案例——在机器不知道该说什么的情况下,它会编造答案。
对于企业来说,这就是为什么像ChatGPT这样的LLM不能直接与客户连接的首要原因,更不用说将其与特定的业务系统、规则和平台集成。
现有的人工智能平台,如Dialpad、Replicant和Five9,正在为联络中心提供防护机制,以更好地利用LLM的力量,同时降低风险。这些方案符合SOC2、HIPAA和PCI标准,以确保客户的个人信息获得最大限度的保护。
而且,由于对话是针对每个用例专门配置的,联络中心可以控制他们的机器所说或写的每个单词,从而消除了由于提示输入(即用户试图“欺骗”LLM的情况)而导致的不可预测的风险。
在快速变化的人工智能世界中,联络中心比以往任何时候都有更多的技术解决方案需要评估。
客户的期望正在提高,ChatGPT 级别的服务将很快成为普遍标准。所有的迹象都表明,客户服务将成为那些在过去的技术革命中一直被忽视的行业中最受益的一方。
以上是在客户服务领域,和ChatGPT有关的变革已经开始的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

DALL-E 3 于 2023 年 9 月正式推出,是比其前身大幅改进的型号。它被认为是迄今为止最好的人工智能图像生成器之一,能够创建具有复杂细节的图像。然而,在推出时,它不包括

如果你一直在关注大型语言模型的架构,你可能会在最新的模型和研究论文中看到“SwiGLU”这个词。SwiGLU可以说是在大语言模型中最常用到的激活函数,我们本篇文章就来对它进行详细的介绍。SwiGLU其实是2020年谷歌提出的激活函数,它结合了SWISH和GLU两者的特点。SwiGLU的中文全称是“双向门控线性单元”,它将SWISH和GLU两种激活函数进行了优化和结合,以提高模型的非线性表达能力。SWISH是一种非常普遍的激活函数,它在大语言模型中得到广泛应用,而GLU则在自然语言处理任务中表现出

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

ChatGPT和Python的完美结合:打造智能客服聊天机器人引言:在当今信息时代,智能客服系统已经成为企业与客户之间重要的沟通工具。而为了提供更好的客户服务体验,许多企业开始转向采用聊天机器人的方式来完成客户咨询、问题解答等任务。在这篇文章中,我们将介绍如何使用OpenAI的强大模型ChatGPT和Python语言结合,来打造一个智能客服聊天机器人,以提高

安装步骤:1、在ChatGTP官网或手机商店上下载ChatGTP软件;2、打开后在设置界面中,选择语言为中文;3、在对局界面中,选择人机对局并设置中文相谱;4、开始后在聊天窗口中输入指令,即可与软件进行交互。

2024年是大型语言模型(LLM)迅速发展的一年。在LLM的训练中,对齐方法是一个重要的技术手段,其中包括监督微调(SFT)和依赖人类偏好的人类反馈强化学习(RLHF)。这些方法在LLM的发展中起到了至关重要的作用,但是对齐方法需要大量的人工注释数据。面对这一挑战,微调成为一个充满活力的研究领域,研究人员积极致力于开发能够有效利用人类数据的方法。因此,对齐方法的发展将推动LLM技术的进一步突破。加州大学最近进行了一项研究,介绍了一种名为SPIN(SelfPlayfInetuNing)的新技术。S

在使用大型语言模型(LLM)时,幻觉是一个常见问题。尽管LLM可以生成流畅连贯的文本,但其生成的信息往往不准确或不一致。为了防止LLM产生幻觉,可以利用外部的知识来源,比如数据库或知识图谱,来提供事实信息。这样一来,LLM可以依赖这些可靠的数据源,从而生成更准确和可靠的文本内容。向量数据库和知识图谱向量数据库向量数据库是一组表示实体或概念的高维向量。它们可以用于度量不同实体或概念之间的相似性或相关性,通过它们的向量表示进行计算。一个向量数据库可以根据向量距离告诉你,“巴黎”和“法国”比“巴黎”和
