首页 后端开发 Python教程 Python中的FP-Growth算法详解

Python中的FP-Growth算法详解

Jun 09, 2023 pm 08:24 PM
python 算法 fp-growth

FP-Growth算法是一种经典的频繁模式挖掘算法,它是一种非常高效的算法,用于从数据集中挖掘经常出现在一起的物品集合。这篇文章将为你详细介绍FP-Growth算法的原理和实现方法。

一、FP-Growth算法基本原理

FP-Growth算法的基本思想是建立一棵FP-Tree(频繁项集树)来表示数据集中的频繁项集,并从FP-Tree中挖掘频繁项集。FP-Tree是一个高效的数据结构,它可以在不生成候选频繁项集的情况下,进行频繁项集的挖掘。

FP-Tree包含两个部分:根节点和树节点。根节点没有值,而树节点包括一个项的名称和项出现的次数。FP-Tree还包括指向相同节点的链接,这些链接称为“链接指针”。

FP-Growth算法的流程包括构建FP-Tree和挖掘频繁项集两个部分:

  1. 构建FP-Tree:

对于每个事务,删除非频繁项,并按照频繁项的支持度大小排序,得到一个频繁项集。

遍历每个事务,对于每个事务的频繁项集,按照出现的顺序插入到FP-Tree中,如果节点已存在,则增加其计数,如果不存在,则插入新的节点。

  1. 挖掘频繁项集:

从FP-Tree中挖掘频繁项集的方法包括:

从FP-Tree的最底部开始,找到每个项集的条件模式库,条件模式库包含所有包含该项集的事务。然后,对该条件模式库递归地构建一棵新的FP-Tree,并寻找该树中的频繁项集。

在新的FP-Tree中,对每个频繁项按照支持度排序,构建候选项的集合,并递归地进行挖掘。重复上述过程,直到找到所有的频繁项集。

二、FP-Growth算法的实现

FP-Growth算法的实现可以使用Python编程语言。下面是一个简单的例子,用于演示FP-Growth算法的实现。

首先,定义一个数据集,例如:

dataset = [['v', 'a', 'p', 'e', 's'],
           ['b', 'a', 'k', 'e'],
           ['a', 'p', 'p', 'l', 'e', 's'],
           ['d', 'i', 'n', 'n', 'e', 'r']]
登录后复制

然后,编写一个函数来生成有序项集,例如:

def create_ordered_items(dataset):
    # 遍历数据集,统计每个项出现的次数
    item_dict = {}
    for trans in dataset:
        for item in trans:
            if item not in item_dict:
                item_dict[item] = 1
            else:
                item_dict[item] += 1

    # 生成有序项集
    ordered_items = [v[0] for v in sorted(item_dict.items(), key=lambda x: x[1], reverse=True)]
    return ordered_items
登录后复制

其中,create_ordered_items函数用于按照项的出现次数获取有序项集。

接下来,编写一个函数来构建FP-Tree:

class TreeNode:
    def __init__(self, name, count, parent):
        self.name = name
        self.count = count
        self.parent = parent
        self.children = {}
        self.node_link = None

    def increase_count(self, count):
        self.count += count

def create_tree(dataset, min_support):
    # 生成有序项集
    ordered_items = create_ordered_items(dataset)

    # 建立根节点
    root_node = TreeNode('Null Set', 0, None)

    # 建立FP-Tree
    head_table = {}
    for trans in dataset:
        # 过滤非频繁项
        filtered_items = [item for item in trans if item in ordered_items]
        # 对每个事务中的项集按频繁项的支持度从大到小排序
        filtered_items.sort(key=lambda x: ordered_items.index(x))
        # 插入到FP-Tree中
        insert_tree(filtered_items, root_node, head_table)

    return root_node, head_table

def insert_tree(items, node, head_table):
    if items[0] in node.children:
        # 如果节点已存在,则增加其计数
        node.children[items[0]].increase_count(1)
    else:
        # 如果节点不存在,则插入新的节点
        new_node = TreeNode(items[0], 1, node)
        node.children[items[0]] = new_node
        # 更新链表中的指针
        if head_table.get(items[0], None) is None:
            head_table[items[0]] = new_node
        else:
            current_node = head_table[items[0]]
            while current_node.node_link is not None:
                current_node = current_node.node_link
            current_node.node_link = new_node

    if len(items) > 1:
        # 对剩余的项进行插入
        insert_tree(items[1:], node.children[items[0]], head_table)
登录后复制

create_tree函数用于构建FP-Tree。

最后,编写一个函数来挖掘频繁项集:

def find_freq_items(head_table, prefix, freq_items, min_support):
    # 对头指针表中的每个项按照出现的次数从小到大排序
    sorted_items = [v[0] for v in sorted(head_table.items(), key=lambda x: x[1].count)]
    for item in sorted_items:
        # 将前缀加上该项,得到新的频繁项
        freq_set = prefix + [item]
        freq_count = head_table[item].count
        freq_items.append((freq_set, freq_count))
        # 构建该项的条件模式库
        cond_pat_base = get_cond_pat_base(head_table[item])
        # 递归地构建新的FP-Tree,并寻找频繁项集
        sub_head_table, sub_freq_items = create_tree(cond_pat_base, min_support)
        if sub_head_table is not None:
            find_freq_items(sub_head_table, freq_set, freq_items, min_support)

def get_cond_pat_base(tree_node):
    cond_pat_base = []
    while tree_node is not None:
        trans = []
        curr = tree_node.parent
        while curr.parent is not None:
            trans.append(curr.name)
            curr = curr.parent
        cond_pat_base.append(trans)
        tree_node = tree_node.node_link
    return cond_pat_base

def mine_fp_tree(dataset, min_support):
    freq_items = []
    # 构建FP-Tree
    root_node, head_table = create_tree(dataset, min_support)
    # 挖掘频繁项集
    find_freq_items(head_table, [], freq_items, min_support)
    return freq_items
登录后复制

mine_fp_tree函数用于挖掘频繁项集。

三、总结

FP-Growth算法是一种高效的频繁模式挖掘算法,通过构建FP-Tree,可以在不生成候选频繁项集的情况下,进行频繁项集的挖掘。Python是一种非常适合实现FP-Growth算法的编程语言,通过使用Python,我们可以快速实现这个算法,并在实践中使用它来挖掘频繁项集。希望这篇文章可以帮助你更好地理解FP-Growth算法的原理和实现方法。

以上是Python中的FP-Growth算法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何在LAMP架构下高效整合Node.js或Python服务? 如何在LAMP架构下高效整合Node.js或Python服务? Apr 01, 2025 pm 02:48 PM

在LAMP架构下整合Node.js或Python服务许多网站开发者都面临这样的问题:已有的LAMP(Linux Apache MySQL PHP)架构网站需要...

使用Scapy爬虫时,管道持久化存储文件无法写入的原因是什么? 使用Scapy爬虫时,管道持久化存储文件无法写入的原因是什么? Apr 01, 2025 pm 04:03 PM

使用Scapy爬虫时,管道持久化存储文件无法写入的原因探讨在学习使用Scapy爬虫进行数据抓取时,经常会遇到一�...

Python跨平台桌面应用开发:哪个GUI库最适合你? Python跨平台桌面应用开发:哪个GUI库最适合你? Apr 01, 2025 pm 05:24 PM

Python跨平台桌面应用开发库的选择许多Python开发者都希望开发出能够在Windows和Linux系统上都能运行的桌面应用程...

Python进程池处理并发TCP请求导致客户端卡死的原因是什么? Python进程池处理并发TCP请求导致客户端卡死的原因是什么? Apr 01, 2025 pm 04:09 PM

Python进程池处理并发TCP请求导致客户端卡死的解析在使用Python进行网络编程时,高效处理并发TCP请求至关重要。...

如何查看Python functools.partial对象内部封装的原始函数? 如何查看Python functools.partial对象内部封装的原始函数? Apr 01, 2025 pm 04:15 PM

深入探讨Pythonfunctools.partial对象的查看方法在使用Python的functools.partial...

Python沙漏图形绘制:如何避免变量未定义错误? Python沙漏图形绘制:如何避免变量未定义错误? Apr 01, 2025 pm 06:27 PM

Python入门:沙漏图形绘制及输入校验本文将解决一个Python新手在沙漏图形绘制程序中遇到的变量定义问题。代码...

在Python中如何优化处理高分辨率图片以精确查找白色圆形区域? 在Python中如何优化处理高分辨率图片以精确查找白色圆形区域? Apr 01, 2025 pm 06:12 PM

在Python中如何处理高分辨率图片以查找白色区域?处理一张9000x7000像素的高分辨率图片,如何准确找出图片中两...

如何用Python高效统计并排序大型商品数据集? 如何用Python高效统计并排序大型商品数据集? Apr 01, 2025 pm 08:03 PM

数据转换与统计:高效处理大型数据集本文将详细介绍如何将一个包含商品信息的数据列表,转换为另一个包含...

See all articles