首页 后端开发 Python教程 Python中的FP-Growth算法详解

Python中的FP-Growth算法详解

Jun 09, 2023 pm 08:24 PM
python 算法 fp-growth

FP-Growth算法是一种经典的频繁模式挖掘算法,它是一种非常高效的算法,用于从数据集中挖掘经常出现在一起的物品集合。这篇文章将为你详细介绍FP-Growth算法的原理和实现方法。

一、FP-Growth算法基本原理

FP-Growth算法的基本思想是建立一棵FP-Tree(频繁项集树)来表示数据集中的频繁项集,并从FP-Tree中挖掘频繁项集。FP-Tree是一个高效的数据结构,它可以在不生成候选频繁项集的情况下,进行频繁项集的挖掘。

FP-Tree包含两个部分:根节点和树节点。根节点没有值,而树节点包括一个项的名称和项出现的次数。FP-Tree还包括指向相同节点的链接,这些链接称为“链接指针”。

FP-Growth算法的流程包括构建FP-Tree和挖掘频繁项集两个部分:

  1. 构建FP-Tree:

对于每个事务,删除非频繁项,并按照频繁项的支持度大小排序,得到一个频繁项集。

遍历每个事务,对于每个事务的频繁项集,按照出现的顺序插入到FP-Tree中,如果节点已存在,则增加其计数,如果不存在,则插入新的节点。

  1. 挖掘频繁项集:

从FP-Tree中挖掘频繁项集的方法包括:

从FP-Tree的最底部开始,找到每个项集的条件模式库,条件模式库包含所有包含该项集的事务。然后,对该条件模式库递归地构建一棵新的FP-Tree,并寻找该树中的频繁项集。

在新的FP-Tree中,对每个频繁项按照支持度排序,构建候选项的集合,并递归地进行挖掘。重复上述过程,直到找到所有的频繁项集。

二、FP-Growth算法的实现

FP-Growth算法的实现可以使用Python编程语言。下面是一个简单的例子,用于演示FP-Growth算法的实现。

首先,定义一个数据集,例如:

dataset = [['v', 'a', 'p', 'e', 's'],
           ['b', 'a', 'k', 'e'],
           ['a', 'p', 'p', 'l', 'e', 's'],
           ['d', 'i', 'n', 'n', 'e', 'r']]
登录后复制

然后,编写一个函数来生成有序项集,例如:

def create_ordered_items(dataset):
    # 遍历数据集,统计每个项出现的次数
    item_dict = {}
    for trans in dataset:
        for item in trans:
            if item not in item_dict:
                item_dict[item] = 1
            else:
                item_dict[item] += 1

    # 生成有序项集
    ordered_items = [v[0] for v in sorted(item_dict.items(), key=lambda x: x[1], reverse=True)]
    return ordered_items
登录后复制

其中,create_ordered_items函数用于按照项的出现次数获取有序项集。

接下来,编写一个函数来构建FP-Tree:

class TreeNode:
    def __init__(self, name, count, parent):
        self.name = name
        self.count = count
        self.parent = parent
        self.children = {}
        self.node_link = None

    def increase_count(self, count):
        self.count += count

def create_tree(dataset, min_support):
    # 生成有序项集
    ordered_items = create_ordered_items(dataset)

    # 建立根节点
    root_node = TreeNode('Null Set', 0, None)

    # 建立FP-Tree
    head_table = {}
    for trans in dataset:
        # 过滤非频繁项
        filtered_items = [item for item in trans if item in ordered_items]
        # 对每个事务中的项集按频繁项的支持度从大到小排序
        filtered_items.sort(key=lambda x: ordered_items.index(x))
        # 插入到FP-Tree中
        insert_tree(filtered_items, root_node, head_table)

    return root_node, head_table

def insert_tree(items, node, head_table):
    if items[0] in node.children:
        # 如果节点已存在,则增加其计数
        node.children[items[0]].increase_count(1)
    else:
        # 如果节点不存在,则插入新的节点
        new_node = TreeNode(items[0], 1, node)
        node.children[items[0]] = new_node
        # 更新链表中的指针
        if head_table.get(items[0], None) is None:
            head_table[items[0]] = new_node
        else:
            current_node = head_table[items[0]]
            while current_node.node_link is not None:
                current_node = current_node.node_link
            current_node.node_link = new_node

    if len(items) > 1:
        # 对剩余的项进行插入
        insert_tree(items[1:], node.children[items[0]], head_table)
登录后复制

create_tree函数用于构建FP-Tree。

最后,编写一个函数来挖掘频繁项集:

def find_freq_items(head_table, prefix, freq_items, min_support):
    # 对头指针表中的每个项按照出现的次数从小到大排序
    sorted_items = [v[0] for v in sorted(head_table.items(), key=lambda x: x[1].count)]
    for item in sorted_items:
        # 将前缀加上该项,得到新的频繁项
        freq_set = prefix + [item]
        freq_count = head_table[item].count
        freq_items.append((freq_set, freq_count))
        # 构建该项的条件模式库
        cond_pat_base = get_cond_pat_base(head_table[item])
        # 递归地构建新的FP-Tree,并寻找频繁项集
        sub_head_table, sub_freq_items = create_tree(cond_pat_base, min_support)
        if sub_head_table is not None:
            find_freq_items(sub_head_table, freq_set, freq_items, min_support)

def get_cond_pat_base(tree_node):
    cond_pat_base = []
    while tree_node is not None:
        trans = []
        curr = tree_node.parent
        while curr.parent is not None:
            trans.append(curr.name)
            curr = curr.parent
        cond_pat_base.append(trans)
        tree_node = tree_node.node_link
    return cond_pat_base

def mine_fp_tree(dataset, min_support):
    freq_items = []
    # 构建FP-Tree
    root_node, head_table = create_tree(dataset, min_support)
    # 挖掘频繁项集
    find_freq_items(head_table, [], freq_items, min_support)
    return freq_items
登录后复制

mine_fp_tree函数用于挖掘频繁项集。

三、总结

FP-Growth算法是一种高效的频繁模式挖掘算法,通过构建FP-Tree,可以在不生成候选频繁项集的情况下,进行频繁项集的挖掘。Python是一种非常适合实现FP-Growth算法的编程语言,通过使用Python,我们可以快速实现这个算法,并在实践中使用它来挖掘频繁项集。希望这篇文章可以帮助你更好地理解FP-Growth算法的原理和实现方法。

以上是Python中的FP-Growth算法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

vscode 可以用于 mac 吗 vscode 可以用于 mac 吗 Apr 15, 2025 pm 07:36 PM

VS Code 可以在 Mac 上使用。它具有强大的扩展功能、Git 集成、终端和调试器,同时还提供了丰富的设置选项。但是,对于特别大型项目或专业性较强的开发,VS Code 可能会有性能或功能限制。

See all articles