首页 科技周边 人工智能 巨头'火拼”AI芯片!AMD力抗英伟达

巨头'火拼”AI芯片!AMD力抗英伟达

Jun 12, 2023 am 09:38 AM
) 巨头 ) 火拼

巨头火拼”AI芯片!AMD力抗英伟达

人工智能浪潮席卷近半年,也让英伟达一把推开了美股万亿俱乐部的大门。

当初只是想在游戏图像计算上分一杯羹的英伟达,没想到在二十多年后成为AI计算的领军者,几乎垄断了整个AI服务器芯片市场。

虽然英特尔曾一度占领服务器市场,但英伟达的GPU在高性能计算方面胜过了它的CPU。英特尔的芯片制程技术落后于台积电,导致其产品战略一直处于被动状态。英伟达已经遥遥领先,而AMD则在追赶英特尔的步伐。

随着英伟达的成功,下一代芯片研发方向更聚焦在如何深度结合AI模型上来,选择不仅仅只有GPU,因为提高算力的高昂代价绝大部分要归功于AI芯片,所以英伟达在模型训练芯片端的领先地位无疑会遭受挑战,英特尔、AMD、高通等企业开始摩拳擦掌,做好准备。

那么,在AI芯片,会有下一个英伟达吗?

01 AI芯片必须先过一道槛

AI芯片可以根据其部署位置分为云端、终端和边缘侧;同时也可以根据任务的不同分为训练芯片和推理芯片。云端就是在数据中心进行模型训练,芯片需要支撑大量的数据运算,终端和边缘侧对算力要求稍弱一些,但要求快速响应的能力和低功耗,英伟达霸占了训练芯片这一领域,不过推理方面不乏比GPU更合适的芯片。

性能各异的专用AI芯片包括GPU、ASIC、FPGA、NPU等,可以简称为XPU,名称的不同反映了各自架构层面上的差异。专用AI芯片在所擅长的领域里有匹配GPU的能力,虽然少了可扩展性,但在效能和算力上领先更通用的GPU,尽管后者能做更多的事情。

这就回到了当初CPU在机器学习领域被弃用的逻辑,将来是否会有一款新的芯片可以对GPU发起冲击?

巨头火拼”AI芯片!AMD力抗英伟达

目前全球大厂们都尤爱造芯,不过通用芯片人家没必要自己做,只会切合自己重要的业务方向来布局。

比如谷歌的TPU采用了ASIC,只针对卷积神经网络的加速器,特斯拉的Dojo是专门用于FSD的机器视觉分析芯片,以及国内百度、阿里也花费大量精力在自研芯片上。

一直以来,专用处理器并未真正给GPU带来过威胁,这主要与市场容量,资金投入,摩尔定律形成的正向循环有关。

根据IDC数据,21年中国AI芯片市场里,GPU占据89%的份额;NPU处理速度比GPU快上10倍,占据9.6%的份额,ASIC和FPGA占比较小,市场份额分别1%和0.4%。

过去三十年,台积电、三星等晶圆代工厂的崛起塑造了分工专业化的趋势,设备和先进制程的技术进步允许像英伟达、高通等芯片设计企业一展身手,也让苹果、谷歌等科技大厂开始用芯片定义产品和服务,专用芯片设计的土壤是肥沃的,大家都是受益者。

在竞争对手看来,GPU并非专门为机器学习而设计的芯片,之所以能成功,主要在于结合框架软件层形成的复杂生态,提高了芯片的通用性。

实际上,自2012年以来,每年头部训练模型算力需求按10倍在增长,一直在逼近摩尔定律下的算力极限。

巨头火拼”AI芯片!AMD力抗英伟达

而从11年Tesla M2090开始,数据中心产品GPU一直在更新迭代,先后推出Volta、Ampere、Hopper等针对高性能训练计算和AI训练的架构,保持每两年推出一代新产品的速度,浮点算力也从7.8 TFLOPS增至30 TFLOPS,涨幅接近4倍。

最新的H100,甚至已经把大模型训练的时间从一周缩短至一天。

巨头火拼”AI芯片!AMD力抗英伟达

基于英伟达在AI芯片领域的高份额,可以说,过去AI模型训练的算力增长主要由英伟达的GPU系列所支撑,这形成了一个正向反馈,随着芯片出货规模的增长,摊平了英伟达芯片的开发成本。

相比较未来的算力需求,一款通用芯片的技术迭代最终也会逐渐放缓,专用处理器只有跑通这个正向循环,才有可能在成本上与通用芯片们并驾齐驱。

不过难度在于,专用处理器仅仅着力在细分市场,市场规模根本比不上通用市场,相对于通用芯片的每单位性能提升,往往需要花上更长的时间,或者更大的出货量来摊薄成本,可是随着AI在应用场景中加速渗透,未来AI芯片的开支也会大幅增长,专用AI芯片、 CPU、GPU有望成为三条并行的线。

根据Precedence Research,2022年全球AI芯片市场规模为168.6亿美元,将以每年约30%的速度增长,预计到2032年达到约2274.8亿美元。

巨头火拼”AI芯片!AMD力抗英伟达

02 三家分晋,如何分庭抗礼?

英伟达对算力的垄断地位在如今大模型战争下加速强化,矛盾日益加剧,GPU采购需求超出台积电和英伟达的预料,供应不足,价格便水涨船高,继续循环。

国内外科技大厂们在选择自研芯片上保持一致的态度,又或者,帮助其他芯片厂和英伟达竞争,刺激新的供给同时降低芯片成本。

上月初AMD盘中大涨12%,原因来自一则消息指出,微软正在与AMD合作,资助后者向AI芯片扩张,并与这家芯片制造商合作一款代号为Athena(雅典娜)的芯片,但之后微软官方否认了这一消息。

这让人联想到上世纪九十年代的“WINTEL”联盟,互相成就了微软在PC操作系统,以及英特尔在CPU的地位。此时的AMD,已经成为了英特尔市场份额最强有力的威胁。

去年计算机市场经受重创,企业服务器和消费电子两端的疲弱对CPU出货量造成不小拖累,英特尔与AMD两家公司均出现了30多年来最大的下滑,分别降低21%和19%。

虽然主业俱显疲态,但行业的竞争格局却再次发生了巨大变化。

据Passmark数据监测,在数据中心市场,去年AMD的份额猛增至20%,抢走了英特尔(2022年,70.77%)接近1成的份额,而截止今年1月2日,AMD重新逼近40%,回到了2004年的水平。

AMD之所以得以穷追不舍,一方面是借助台积电的力量,让其产品组合不断优化,用于数据中心的EPYC Milan处理器采用率提高,去年这项业务营收增长64%。

巨头火拼”AI芯片!AMD力抗英伟达

另一方面则与竞争对手糟糕的战略决策有关。英特尔在CPU方面的创新已经枯竭,过去十年中一直保持领先地位的他们的产品力相对竞争对手下滑不少。

当初苹果想要英特尔为初代iPhone开发手机CPU,CEO保罗·欧德宁因为报价太低回绝,这位x86领头羊错估了移动端的机会。

除了战略眼光不足,还有不断跳票的产品推新计划,英特尔是旧IDM时代的老头,如今台积电、三星领导着先进制程的迭代,是CPU这类通用芯片继续升级的基座,英特尔本身工艺技术的掉队反噬着产品的更新节奏,更多的是“挤牙膏”式的添头。从2021年高点至今,其市值削去了一半不止。

巨头火拼”AI芯片!AMD力抗英伟达

反观AMD,则一路拓宽产品品类,追逐高性价比的策略,先后收购了ATI,Xilinx,成为第一家同时拿下CPU GPU FPGA的芯片厂商。2018年AMD在PC端的CPU制程首次弯道超车,市场份额开始加速提升,2019年联手台积电率先跃入7nm,在服务器端也实现制程超越,去年市值超过了英特尔。

前不久,AMD推出结合CPU GPU双架构的Instinct MI 300正式进军AI训练端,这款芯片在规格和性能直接对标了英伟达的Grace Hopper。

这是AMD管理层强调AI作为战略重点后的重棋,与英伟达同时出租自家算力不同,AMD着力于构建具有竞争力的芯片矩阵,与其正面交锋,或将从云厂商的数据中心开始突破,预计今年四季度开始放量。

巨头火拼”AI芯片!AMD力抗英伟达

实际上,并不是这两CPU巨头打架,把英伟达晾在一边,结果赶不上趟儿。

英特尔从2015年开始花巨资收购了一大批人工智能公司,如Altera、Mobileye、Nervana等,结果并没有给业务带来多少帮助,更像是养着这些公司等着刮彩票。

英特尔也一直计划推出一款能媲美英伟达的GPU,只是计划一直跳票。

2021年,英特尔曾宣布一款代号为“Ponte Vecchio”的旗舰GPU,用于数据中心,结果却在交付上不断拖延。作为继任者,Falcon Shores GPU结合了x86 CPU和Xe GPU,也跳票到了2025年。

诚然,英伟达的成功并不只是硬件做得好,有别于英特尔过去硬件第一的路径,英伟达GPU架构保持了两年一代的速度演进,凭借着通用的计算框架构筑起了软件生态壁垒。

芯片发展历程中,定义标准的赢家往往强者恒强,要与英伟达分庭抗礼,性价比是必需砝码,生态圈同样关键。算力发展推动AI进步,还要倚仗这些厂商的竞争和互相超越。

在这些方面,无论是AMD、英特尔,还是其他的后来者大厂,都还有很长的路要走。

以上是巨头'火拼”AI芯片!AMD力抗英伟达的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

我尝试了使用光标AI编码的Vibe编码,这太神奇了! 我尝试了使用光标AI编码的Vibe编码,这太神奇了! Mar 20, 2025 pm 03:34 PM

Vibe编码通过让我们使用自然语言而不是无尽的代码行创建应用程序来重塑软件开发的世界。受Andrej Karpathy等有远见的人的启发,这种创新的方法使Dev

2025年2月的Genai推出前5名:GPT-4.5,Grok-3等! 2025年2月的Genai推出前5名:GPT-4.5,Grok-3等! Mar 22, 2025 am 10:58 AM

2025年2月,Generative AI又是一个改变游戏规则的月份,为我们带来了一些最令人期待的模型升级和开创性的新功能。从Xai的Grok 3和Anthropic的Claude 3.7十四行诗到Openai的G

如何使用Yolo V12进行对象检测? 如何使用Yolo V12进行对象检测? Mar 22, 2025 am 11:07 AM

Yolo(您只看一次)一直是领先的实时对象检测框架,每次迭代都在以前的版本上改善。最新版本Yolo V12引入了进步,可显着提高准确性

Chatgpt 4 o可用吗? Chatgpt 4 o可用吗? Mar 28, 2025 pm 05:29 PM

Chatgpt 4当前可用并广泛使用,与诸如ChatGpt 3.5(例如ChatGpt 3.5)相比,在理解上下文和产生连贯的响应方面取得了重大改进。未来的发展可能包括更多个性化的间

Google的Gencast:Gencast Mini Demo的天气预报 Google的Gencast:Gencast Mini Demo的天气预报 Mar 16, 2025 pm 01:46 PM

Google DeepMind的Gencast:天气预报的革命性AI 天气预报经历了巨大的转变,从基本观察到复杂的AI驱动预测。 Google DeepMind的Gencast,开创性

哪个AI比Chatgpt更好? 哪个AI比Chatgpt更好? Mar 18, 2025 pm 06:05 PM

本文讨论了AI模型超过Chatgpt,例如Lamda,Llama和Grok,突出了它们在准确性,理解和行业影响方面的优势。(159个字符)

最佳AI艺术生成器(免费付款)创意项目 最佳AI艺术生成器(免费付款)创意项目 Apr 02, 2025 pm 06:10 PM

本文回顾了AI最高的艺术生成器,讨论了他们的功能,对创意项目的适用性和价值。它重点介绍了Midjourney是专业人士的最佳价值,并建议使用Dall-E 2进行高质量的可定制艺术。

O1 vs GPT-4O:OpenAI的新型号比GPT-4O好吗? O1 vs GPT-4O:OpenAI的新型号比GPT-4O好吗? Mar 16, 2025 am 11:47 AM

Openai的O1:为期12天的礼物狂欢始于他们迄今为止最强大的模型 12月的到来带来了全球放缓,世界某些地区的雪花放缓,但Openai才刚刚开始。 山姆·奥特曼(Sam Altman)和他的团队正在推出12天的礼物前

See all articles