会模仿笔迹的AI,为你创造专属字体
笔迹模仿 AI 的研究背景
俗话说,见字如面,字如其人。相比呆板的打印字体,手写体更能体现书写者的个人特点。相信很多人都曾设想过,拥有一套属于自己的手写字体,用在社交软件中,更好的展示自己的个人风格。
然而,不同于英文字母,汉字数量是极其庞大的,想要创造一套自己的专属字体代价十分高昂。例如,最新发布的国标GB18030-2022中文字符集包含8万多个汉字。有报道称,某视频网站博主花了18个小时写完了7000多个汉字,中间耗费了足足13支笔,手都写麻了!
上述问题引发了论文作者的思考,能否设计一个文字自动生成模型,帮助解决专属字体创造代价高的问题呢?为了解决这一问题,研究者设想提出一个会笔迹模仿的 AI,仅需用户提供少量的手写样本(大约 10 几张),就能提取笔迹中蕴含的书写风格(例如字符的大小、倾斜程度、横宽比、笔画的长短和曲率等),并且临摹该风格去合成更多的文字,从而为用户高效合成一套完整的手写字体。
进一步地,论文作者从应用价值和用户体验两个角度出发,对该模型的输入和输出模态做了如下思考:1. 考虑到序列模态的在线字体 (online handwritings) 比图像模态的离线文字 (offline handwritings) 包含更丰富的信息(轨迹点的详细位置和书写顺序,如下图所示),将模型的输出模态设置为在线文字会有更广泛的应用前景,例如可以应用到机器人写字和书法教育上。2. 在日常生活中,相比通过平板和触摸笔等采集设备获取在线文字,人们利用手机拍照获取离线文字更加方便。因此,将生成模型的输入模态设为离线文字,用户使用起来会更加方便!
总结起来,本文的研究目标是提出一个风格化的在线手写文字生成模型 (stylized online handwriting generation method)。该模型既能临摹用户提供的离线文字中所蕴含的书写风格,又能根据用户需要在线生成内容可控的手写笔迹。
- 论文地址:https://arxiv.org/abs/2303.14736
- 代码开源:https://github.com/dailenson/SDT
主要挑战
为了实现上述目标,研究者们分析了两个关键问题:1. 由于用户只能提供少量的字符样本,能否仅从这些少量的参考样本中学习用户独特的书写风格呢?换句话说,根据少量的参考样本临摹用户的书写风格是否可行?2. 本文的研究目标不仅需要满足生成的文字风格可控,还需要内容也可控。因此,在学习到用户的书写风格后,如何将该风格与文字内容高效的结合,从而生成满足用户期望的手写笔迹?接下来让我们看看这篇 CVPR 2023 提出的 SDT(style disentangled Transformer)方法是怎样解决这两个问题的吧。
解决方案
研究动机 研究者发现,个人笔迹中通常存在两种书写风格:1. 相同书写者的笔迹存在着一种整体上的风格共性,各个字符呈现出相似的倾斜程度和宽高比,且不同书写者的风格共性各不相同。由于这种特性可以用于区分出不同的书写者,研究者们称其为书写者风格。2. 除了整体上的风格共性,来自同一书写者的不同字符间存在着细节上的风格不一致。例如,对于 “黑” 和 “杰” 两个字符,二者在字符结构上具有相同的四点水部首,但该部首在不同的字符中存在微弱的书写差异,体现在笔画书写的长短、位置和曲率上。研究者们将这种字形上的细微的风格模式称为字形风格。受启发于上述观察,SDT 旨在从个人笔迹中解耦出书写者和字形风格,期望提升对用户笔迹的风格模仿能力。
在学习到风格信息后,不同于以往的手写文字生成方法简单的将风格和内容特征进行简单的拼接,SDT 将内容特征作为查询向量,自适应的捕获风格信息,从而实现风格和内容的高效融合,生成符合用户预期的手写笔迹。
方法框架 SDT 的整体框架如下图所示,包含双分支风格编码器、内容编码器和 transformer 解码器三部分。首先,本文提出两个互补的对比学习目标来引导风格编码器的书写者分支和字形分支分别学习对应的风格提取。然后,SDT 利用 transformer 的注意力机制 (multi-head attention) 对风格特征和内容编码器提取到的内容特征进行动态融合,渐进式的合成在线手写文字。
(a) 书写者风格对比学习 SDT 提出面向书写者风格提取的有监督对比学习目标(WriterNCE),将属于相同书写者的字符样本聚集在一起,推远属于不同书写者的手写样本,显示地引导书写者分支关注个人笔迹中的风格共性。
(b) 字形风格对比学习 为了学习更加细节的字形风格,SDT 提出无监督的对比学习目标 (GlyphNCE),用于最大化相同字符不同视角间的互信息,鼓励字形分支专注学习字符中的细节模式。具体如下图所示,首先对同一张手写字符做两次独立的采样,获取一对含有笔画细节信息的正样本
和
,然后从其他字符中采样得到负样本
。每次采样时,随机选择少量样本块作为包含原始样本细节的新视角。样本块的采样服从均匀分布,避免字符的某些区域被过度采样。为了更好的引导字形分支,采样过程直接作用于字形分支输出的特征序列上。
(c) 风格和内容信息的融合策略 获取了两种风格特征后,如何将其与内容编码器学习到的内容编码进行高效融合呢?为了解决这一问题,在任意的解码时刻 t,SDT 将内容特征视作初始点,然后结合 q 和 t 时刻之前输出的轨迹点
形成新的内容上下文
。接着,内容上下文被视为 query 向量,风格信息作为 key & value 向量。在交叉注意力机制的融合下,内容上下文与两种风格信息依次完成动态聚合。
实验
定量评价 SDT 在中文、日文、印度文和英文数据集上都取得了最优异的性能,尤其是在风格分数指标上,相比之前的 SOTA 方法,SDT 取得了较大突破。
定性评价 在中文生成方面,相比以前的方法,SDT 生成的手写字符既能避免字符的崩坏又能很好的临摹用户的书写风格。得益于字形风格学习,SDT 在字符的笔画细节生成方面也能做的很好。
在其他语言上 SDT 也表现良好。尤其在印度文生成方面,现有主流方法很容易生成崩溃的字符,而我们的 SDT 依旧能够维持字符内容的正确性。
不同模块对算法性能的影响 如下表所示,本文提出的各个模块具有协同作用,有效提升了对用户笔迹的临摹性能。具体来说,书写者风格的加入提升了 SDT 对字符整体风格的模仿,例如字符的倾斜程度和长宽比等,而字形风格的加入改善了生成字符的笔画细节。相比已有方法简单的融合策略,在各项指标上 SDT 的自适应动态融合策略全面增强了字符的生成性能。
两种风格的可视化分析 对两种风格特征进行傅里叶变换得到如下的频谱图,从图中观察到,书写者风格包含更多的低频成分,而字形风格主要关注高频成分。事实上,低频成分包含目标的整体轮廓,高频成分则更加关注物体的细节。这一发现进一步验证和解释了解耦书写风格的有效性。
展望
大家可以通过笔迹 AI 创造自己的专属字体,在社交平台上更好的表达自我!
以上是会模仿笔迹的AI,为你创造专属字体的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

Aavenomics是修改AAVE协议令牌并引入令牌回购的提议,已为AAVEDAO实现了一个法定人数。AAVE连锁计划(ACI)创始人马克·泽勒(MarcZeller)在X上宣布了这一点,并指出它标志着该协议的新时代。AAVE连锁倡议(ACI)创始人MarcZeller在X上宣布,Aavenomics提案包括修改AAVE协议令牌和引入令牌回购,已为AAVEDAO实现了法定人数。根据Zeller的说法,这标志着该协议的新时代。AaveDao成员以压倒性的投票支持该提议,即在周三以每周100

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

2025年在杠杆交易、安全性和用户体验方面表现突出的平台有:1. OKX,适合高频交易者,提供最高100倍杠杆;2. Binance,适用于全球多币种交易者,提供125倍高杠杆;3. Gate.io,适合衍生品专业玩家,提供100倍杠杆;4. Bitget,适用于新手及社交化交易者,提供最高100倍杠杆;5. Kraken,适合稳健型投资者,提供5倍杠杆;6. Bybit,适用于山寨币探索者,提供20倍杠杆;7. KuCoin,适合低成本交易者,提供10倍杠杆;8. Bitfinex,适合资深玩

适合新手的加密货币数据平台有CoinMarketCap和非小号。1. CoinMarketCap提供全球加密货币实时价格、市值、交易量排名,适合新手与基础分析需求。2. 非小号提供中文友好界面,适合中文用户快速筛选低风险潜力项目。

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。

加密货币市场暴跌引发投资者恐慌,Dogecoin(Doge)成为重灾区之一。其价格大幅下挫,去中心化金融(DeFi)总价值锁定(TVL)也出现显着下降。 “黑色星期一”的抛售潮席卷加密货币市场,Dogecoin首当其冲。其DeFiTVL跌至2023年水平,币价在过去一个月内下跌23.78%。 Dogecoin的DeFiTVL降至272万美元的低点,主要原因是SOSO价值指数下跌26.37%。其他主要DeFi平台,如无聊的Dao和Thorchain,TVL也分别下降了24.04%和20.
