目录
ChatLaw 的数据来源、训练框架
实验结果
首页 科技周边 人工智能 挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判

Jul 05, 2023 am 09:21 AM
语言 模型

大模型又「爆了」。

昨晚,一个法律大模型 ChatLaw 登上了知乎热搜榜榜首。热度最高时达到了 2000 万左右。

这个 ChatLaw 由北大团队发布,致力于提供普惠的法律服务。一方面当前全国执业律师不足,供给远远小于法律需求;另一方面普通人对法律知识和条文存在天然鸿沟,无法运用法律武器保护自己。

大语言模型最近的崛起正好为普通人以对话方式咨询法律相关问题提供了一个绝佳契机。

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判

目前,ChatLaw 共有三个版本,分别如下:

  • ChatLaw-13B,为学术 demo 版,基于姜子牙 Ziya-LLaMA-13B-v1 训练而来,中文各项表现很好。但是,逻辑复杂的法律问答效果不佳,需要用更大参数的模型来解决;
  • ChatLaw-33B,也为学术 demo 版,基于 Anima-33B 训练而来,逻辑推理能力大幅提升。但是,由于 Anima 的中文语料过少,问答时常会出现英文数据;
  • ChatLaw-Text2Vec,使用 93w 条判决案例做成的数据集,基于 BERT 训练了一个相似度匹配模型,可以将用户提问信息和对应的法条相匹配。

根据官方演示,ChatLaw 支持用户上传文件、录音等法律材料,帮助他们归纳和分析,生成可视化导图、图表等。此外,ChatLaw 可以基于事实生成法律建议、法律文书。该项目在 GitHub 上的 Star 量达到了 1.1k。

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

官网地址:https://www.chatlaw.cloud/

论文地址:https://arxiv.org/pdf/2306.16092.pdf

这是我们的 GitHub 项目链接:https://github.com/PKU-YuanGroup/ChatLaw

目前,由于 ChatLaw 项目太过火爆,服务器暂时崩溃,算力已达上限。该团队正在修复,感兴趣的读者可以在 GitHub 上部署测试版模型。

小编本人也还在内测排队中。所以这里先展示一个 ChatLaw 团队提供的官方对话示例,关于日常网购时可能会遇到的「七天无理由退货」问题。不得不说,ChatLaw 回答挺全的。

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

不过,小编发现,ChatLaw 的学术 demo 版本可以试用,遗憾的是没有接入法律咨询功能,只提供了简单的对话咨询服务。这里尝试问了几个问题。

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判

其实最近发布法律大模型的不只有北大一家。上个月底,幂律智能联合智谱 AI 发布了千亿参数级法律垂直大模型 PowerLawGLM。据悉该模型针对中文法律场景的应用效果展现出了独特优势。

ChatLaw 的数据来源、训练框架

首先是数据组成。ChatLaw 数据主要由论坛、新闻、法条、司法解释、法律咨询、法考题、判决文书组成,随后经过清洗、数据增强等来构造对话数据。同时,通过与北大国际法学院、行业知名律师事务所进行合作,ChatLaw 团队能够确保知识库能及时更新,同时保证数据的专业性和可靠性。下面我们看看具体示例。

基于法律法规和司法解释的构建示例:

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判

抓取真实法律咨询数据示例:

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判

律师考试多项选择题的建构示例:

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

然后是模型层面。为了训练 ChatLAW,研究团队在 Ziya-LLaMA-13B 的基础上使用低秩自适应 (Low-Rank Adaptation, LoRA) 对其进行了微调。此外,该研究还引入 self-suggestion 角色,来缓解模型产生幻觉问题。训练过程在多个 A100 GPU 上进行,并借助 deepspeed 进一步降低了训练成本。

如下图为 ChatLAW 架构图,该研究将法律数据注入模型,并对这些知识进行特殊处理和加强;与此同时,他们也在推理时引入多个模块,将通识模型、专业模型和知识库融为一体。

该研究还在推理中对模型进行了约束,这样才能确保模型生成正确的法律法规,尽可能减少模型幻觉。

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

一开始研究团队尝试传统的软件开发方法,如检索时采用 MySQL 和 Elasticsearch,但结果不尽如人意。因而,该研究开始尝试预训练 BERT 模型来进行嵌入,然后使用 Faiss 等方法以计算余弦相似度,提取与用户查询相关的前 k 个法律法规。

当用户的问题模糊不清时,这种方法通常会产生次优的结果。因此,研究者从用户查询中提取关键信息,并利用该信息的向量嵌入设计算法,以提高匹配准确性。

由于大型模型在理解用户查询方面具有显著优势,该研究对 LLM 进行了微调,以便从用户查询中提取关键字。在获得多个关键字后,该研究采用算法 1 检索相关法律规定。

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

实验结果

该研究收集了十余年的国家司法考试题目,整理出了一个包含 2000 个问题及其标准答案的测试数据集,用以衡量模型处理法律选择题的能力。

然而,研究发现各个模型的准确率普遍偏低。在这种情况下,仅对准确率进行比较并无多大意义。因此,该研究借鉴英雄联盟的 ELO 匹配机制,做了一个模型对抗的 ELO 机制,以便更有效地评估各模型处理法律选择题的能力。以下分别是 ELO 分数和胜率图:

挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判图片

通过对上述实验结果的分析,我们可以得出以下观察结果

(1)引入与法律相关的问答和法规条文的数据,可以在一定程度上提高模型在选择题上的表现;

(2)加入特定类型任务的数据进行训练,模型在该类任务上的表现会明显提升。例如,ChatLaw 模型优于 GPT-4 的原因是文中使用了大量的选择题作为训练数据;

(3)法律选择题需要进行复杂的逻辑推理,因此,参数量更大的模型通常表现更优。

参考知乎链接:

https://www.zhihu.com/question/610072848

其他参考链接:

https://mp.weixin.qq.com/s/bXAFALFY6GQkL30j1sYCEQ

以上是挤爆服务器,北大法律大模型ChatLaw火了:直接告诉你张三怎么判的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24) 牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24) Apr 23, 2024 pm 01:20 PM

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对

See all articles