将上下文长度扩展到256k,无限上下文版本的LongLLaMA来了?
今年 2 月,Meta 发布的 LLaMA 大型语言模型系列,成功推动了开源聊天机器人的发展。因为 LLaMA 比之前发布的很多大模型参数少(参数量从 70 亿到 650 亿不等),但性能更好,例如,最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B,所以一经发布让很多研究者兴奋不已。
然而,LLaMA 仅授权给学术界的研发人员使用,从而限制了该模型的商业应用。
因而,研究者开始寻找那些可用于商业用途的 LLaMA,UC 伯克利的博士生 Hao Liu 发起的项目 OpenLLaMA,就是其中一个比较热门的 LLaMA 开源复制品,其使用了与原始 LLaMA 完全相同的预处理和训练超参数,可以说 OpenLLaMA 完全按照 LLaMA 的训练步骤来的。最重要的一点是,该模型可商用。
OpenLLaMA 在 Together 公司发布的 RedPajama 数据集上训练完成,有三个模型版本,分别为 3B、7B 和 13B,这些模型都经过了 1T tokens 的训练。结果显示,OpenLLaMA 在多项任务中的表现都与原始 LLaMA 相当,甚至有超越的情况。
除了不断发布新模型,研究者对模型处理 token 的能力探索不断。
几天前,田渊栋团队的最新研究用不到 1000 步微调,将 LLaMA 上下文扩展到 32K。再往前追溯,GPT-4 支持 32k token(这相当于 50 页的文字) ,Claude 可以处理 100k token (大概相当于一键总结《哈利波特》第一部)等等。
现在,一个新的基于 OpenLLaMA 大型语言模型来了,它将上下文的长度扩展到 256k token,甚至更多。该研究由 IDEAS NCBR 、波兰科学院、华沙大学、 Google DeepMind 联合完成。
图片
LongLLaMA 基于 OpenLLaMA 完成,微调方法采用 FOT ( Focused Transformer )。本文表明,FOT 可以用于对已经存在的大型模型进行微调,以扩展其上下文长度。
该研究以 OpenLLaMA-3B 和 OpenLLaMA-7B 模型为起点,并使用 FOT 对它们进行微调。由此产生的模型称之为 LONGLLAMAs,能够在其训练上下文长度之外进行外推(甚至可以达到 256K),并且在短上下文任务上还能保持性能。
- 项目地址:https://github.com/CStanKonrad/long_llama
- 论文地址:https://arxiv.org/pdf/2307.03170.pdf
有人将这一研究形容为 OpenLLaMA 的无限上下文版本,借助 FOT,模型很容易外推到更长的序列,例如在 8K token 上训练的模型,可以很容易外推到 256K 窗口大小。
图片
本文用到了 FOT 方法,它是 Transformer 模型中一种即插即用的扩展,可用于训练新模型,也可对现有的较大模型进行更长上下文微调。
为了达到这一目的,FOT 使用了记忆注意力层和跨批次(crossbatch)训练过程:
- 记忆注意力层使模型能够在推理时从外部存储器中检索信息,从而有效地扩展了上下文;
- 跨批次训练过程使模型倾向于学习(键,值)表示,这些表示对于记忆注意力层的使用非常简便。
有关 FOT 架构的概述,请参见图 2:
图片
下表为 LongLLaMA 的一些模型信息:
图片
最后,该项目还提供了 LongLLaMA 与原始 OpenLLaMA 模型的比较结果。
下图为 LongLLaMA 一些实验结果,在密码检索任务上,LongLLaMA 取得了良好的性能。具体而言,LongLLaMA 3B 模型远远超出了它的训练上下文长度 8K,对于 token 为 100k 时,准确率达到 94.5%,当 token 为 256k 时,准确率为 73%。
图片
下表为 LongLLaMA 3B 模型在两个下游任务(TREC 问题分类和 WebQS 问题回答)上的结果,结果显示,在使用长上下文时,LongLLaMA 性能改进明显。
图片
下表显示了即使在不需要长上下文的任务上,LongLLaMA 也能表现良好。实验在零样本设置下,对 LongLLaMA 和 OpenLLaMA 进行了比较。
图片
了解更多细节,可参考原论文与项目。
以上是将上下文长度扩展到256k,无限上下文版本的LongLLaMA来了?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

加密货币市场暴跌引发投资者恐慌,Dogecoin(Doge)成为重灾区之一。其价格大幅下挫,去中心化金融(DeFi)总价值锁定(TVL)也出现显着下降。 “黑色星期一”的抛售潮席卷加密货币市场,Dogecoin首当其冲。其DeFiTVL跌至2023年水平,币价在过去一个月内下跌23.78%。 Dogecoin的DeFiTVL降至272万美元的低点,主要原因是SOSO价值指数下跌26.37%。其他主要DeFi平台,如无聊的Dao和Thorchain,TVL也分别下降了24.04%和20.

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

Aavenomics是修改AAVE协议令牌并引入令牌回购的提议,已为AAVEDAO实现了一个法定人数。AAVE连锁计划(ACI)创始人马克·泽勒(MarcZeller)在X上宣布了这一点,并指出它标志着该协议的新时代。AAVE连锁倡议(ACI)创始人MarcZeller在X上宣布,Aavenomics提案包括修改AAVE协议令牌和引入令牌回购,已为AAVEDAO实现了法定人数。根据Zeller的说法,这标志着该协议的新时代。AaveDao成员以压倒性的投票支持该提议,即在周三以每周100

2025年在杠杆交易、安全性和用户体验方面表现突出的平台有:1. OKX,适合高频交易者,提供最高100倍杠杆;2. Binance,适用于全球多币种交易者,提供125倍高杠杆;3. Gate.io,适合衍生品专业玩家,提供100倍杠杆;4. Bitget,适用于新手及社交化交易者,提供最高100倍杠杆;5. Kraken,适合稳健型投资者,提供5倍杠杆;6. Bybit,适用于山寨币探索者,提供20倍杠杆;7. KuCoin,适合低成本交易者,提供10倍杠杆;8. Bitfinex,适合资深玩

适合新手的加密货币数据平台有CoinMarketCap和非小号。1. CoinMarketCap提供全球加密货币实时价格、市值、交易量排名,适合新手与基础分析需求。2. 非小号提供中文友好界面,适合中文用户快速筛选低风险潜力项目。
