BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」
多模态大语言模型(Multimodal Large Language Model,MLLM)依赖于LLM丰富的知识储备以及强大的推理和泛化能力来解决多模态问题,目前已经涌现出一些令人惊叹的能力,比如看图写作和看图写代码。
但仅根据这些样例很难充分反映MLLM的性能,目前仍然缺乏对MLLM的全面评测。
为此,腾讯优图实验室联合厦门大学在新建的评测基准MM上首次对现有12种开源MLLM模型进行了全面定量评测并公布了16个排行榜,包含感知和认知两个总榜以及14个子榜单:
论文链接:https://arxiv.org/pdf/2306.13394.pdf
项目链接:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation
现有MLLM的定量评测方法主要分为三类,但都存在一定的局限导致难以全面反映其性能。
第一类方法在传统的公开数据集上进行评测,例如图像描述(Image Caption)和视觉问答(VQA)数据集。
但一方面这些传统数据集可能难以反映MLLM涌现的新能力,另一方面由于大模型时代的训练集都不再统一,因此难以保证这些评测数据集没有被其他MLLM训练过。
第二种方式是收集新的数据进行开放式评测,但这些数据要么未公开[1],要么数量太少(仅有50张)[2]。
第三种方式聚焦于MLLM的某个特定方面,比如物体幻觉(Object Hallucination)[3]或者对抗鲁棒性[4],无法做全面评测。
目前亟需一个全面的评测基准来匹配MLLM的快速发展。研究人员认为一个通用的全面评测基准应该具有以下特点:
(1)应该覆盖尽可能多的范围,包括感知和认知能力。前者指的是识别物体,包括其存在性、数量、位置和颜色等。后者指的是综合感知信息以及LLM中的知识来进行更复杂的推理。其中前者是后者的基础。
(2)数据或者标注应该尽可能避免采用已有的公开数据集,以减少数据泄露的风险。
(3)指令应该尽可能简洁并且符合人类的认知习惯。不同的指令设计可能会极大影响模型的输出,但所有的模型都在统一的简洁指令下进行评测可以保证公平性。一个好的MLLM模型应该具备泛化到这种简洁指令上的能力,避免陷入Prompt Engineering。
(4)MLLM在该简洁指令下的输出应该是直观的并且便于定量统计。MLLM开放式的回答给量化统计提出了很大挑战。现有方法倾向于使用GPT或者人工打分,但可能面临着不准确和主观性的问题。
图1. MME评测基准示例。每张图片对应两个问题,答案分别为Yes[Y]和No[N]。问题加上「Please answer yes or no」共同构成指令。
基于以上原因,一个新的MLLM评测基准MME被构建出来,它同时具备以上四个特点:
1. MME同时评测感知和认知能力。除了OCR外,感知能力还包括粗粒度和细粒度目标识别。前者识别物体的存在性、数量、位置和颜色。后者识别电影海报、名人、场景、地标和艺术品。认知能力包括常识推理、数值计算、文本翻译和代码推理。总的子任务数达到14种,如图1所示。
2. MME中所有的指令-答案对都是人工构建的。对于少量使用到的公开数据集,仅使用其图像而没有依赖其原始标注。同时,研究人员也尽力通过人工拍摄和图像生成的方式来采集数据。
3. MME的指令被设计得尽量简洁以避免Prompt Engineering对模型输出的影响。研究人员再次申明一个好的MLLM应该泛化到这种简洁且使用频繁的指令,这对所有模型都是公平的。图1中显示了每个子任务的指令。
4. 得益于指令设计「Please answer yes or no」,可以方便地根据模型输出的「Yes」或「No」进行定量统计,这种方式可以同时保证准确性和客观性。值得注意的是,研究人员也尝试过设计选择题的指令,但发现当前的MLLM还难以跟随这类较为复杂的指令。
研究人员一共评测了12种先进的MLLM模型,包括BLIP-2 [5]、LLaVA [6]、MiniGPT-4 [7]、 mPLUG-Owl [2]、LLaMA-Adapter-v2 [8]、Otter [9]、Multimodal-GPT [10]、InstructBLIP [11]、 VisualGLM-6B [12], PandaGPT [13], ImageBind-LLM [14] 和 LaVIN [15]。
其中,统计指标有三种,包括Accuracy,Accuracy+和Score。其中对于每个任务,Accuracy是基于问题统计而来,Accuracy+是基于图片统计而来(图片对应的两个问题都需要回答正确),Score是Accuracy和Accuracy+的和。
感知的总分为10种感知类子任务Score的总和,认知的总分是4种认知类任务Score的总和。具体详见项目链接。
12种模型在14种子任务上的测试比较如图2所示:
图2. 12种模型在14种子任务上的比较。每种子任务的满分为200分。
一共16个榜单,包括感知类和认知类的总榜单以及14个子任务的榜单也已发布。两个总榜单分别如图3和图4所示,值得注意的是BLIP-2和InstructBLIP在这两个榜单中都保持在前三。
图片
图3.感知类任务总榜单
图4.认知类任务总榜单
图5.所有榜单
另外研究人员也总结了MLLM模型在实验中暴露的一些通用问题,如图6所示,希望可以为后续的模型优化提供指导。
图片
图6. MLLM暴露的通用问题。[Y]/[N]表示真实的答案是Yes/No。[R]是MLLM生成的答案。
第一个问题是不跟随指令。
尽管已经采用了非常简洁的指令设计,但仍然有MLLM自由回答问题而不是跟随指令。
如图6中的第一行所示,指令已经申明「Please answer yes or no」,但MLLM仅给出了一个陈述性回答。如果在回答的开头没有出现「Yes」或者「No」,都判定该回答错误。一个好的MLLM,尤其是经过指令微调后,应该能够泛化到这种简单的指令上。
第二个问题是缺乏感知能力。
如图6中的第二行所示,MLLM错误地识别了第一张图片中香蕉的数量和第二张图片中的数字,导致回答错误。研究人员也注意到感知的性能很容易受到指令变化的影响,因为同一张图的两个指令只相差一个单词,但导致了完全不同的感知结果。
第三个问题是缺乏推理能力。
如图6中的第三行所示,从红色的文字可以看出MLLM已经知道了第一张图片不是一个办公场所,但仍然给出了一个错误的回答「Yes」。
相似地,在第二张图片中,MLLM已经计算得到了正确的算数结果,但最终也给出了错误的答案。添加思维链Prompt,例如「Let’s think step by step」也许能带来更好的效果。期待这方面有更深入的研究。
第四个问题跟随指令的物体幻视。如图6中的第四行所示,当指令中含有图片中不存在的物体时,MLLM将会幻想该物体存在并最终给出一个「Yes」的回答。
这种总是回答「Yes」的方式导致了Accuracy接近于50%,Accuracy+接近于0。这表明抑制目标幻视的重要性,并且也需要进一步思考MLLM生成的答案的可靠性。
以上是BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
