一句话搞定数据分析,浙大全新大模型数据助手,连搜集都省了
处理数据,用这一个AI工具就够了!
依靠背后的大语言模型(LLM),只需要用一句话描述自己想看的数据,其他统统交给它!
处理、分析,甚至可视化,都能轻松搞定,甚至连搜集也不用自己动手。
图片
这款基于LLM的AI数据助手叫做Data-Copilot,由浙江大学团队研发。
相关论文预印本已经发布。
以下内容由投稿者提供
金融、气象、能源等各行各业每天都会生成大量的异构数据。人们急切需要一个工具来有效地管理、处理和展示这些数据。
DataCopilot通过部署大语言模型来自主地管理和处理海量数据,满足多样化的用户查询、计算、预测、可视化等需求。
只需要输入文字告诉DataCopilot你想看的数据,无需繁琐的操作,无需自己编写代码,DataCopilot自主地将原始数据转化为最符合用户意图的可视化结果。
为了实现的囊括各种形式的数据相关任务的通用框架,研究团队提出了Data-Copilot。
这一模型解决了单纯使用LLM存在的数据泄露风险、计算能力差、无法处理复杂任务等问题。
图片
在接收到复杂请求时,Data-Copilot会自主设计并调度独立的接口,构建一个工作流程来满足用户的意图。
在没有人类协助的情况下,它能够熟练地将来自不同来源、不同格式的原始数据转化为人性化的输出,如图形、表格和文本。
图片
Data-Copilot项目的主要贡献包括:
- 连接了不同领域的数据源和多样化的用户需求,减少了繁琐的劳动和专业知识。
- 实现了自主管理、处理、分析、预测和可视化数据,可将原始数据转化为最符合用户意图的信息性结果。
- 具有设计者和调度者的双重身份,包括两个过程:接口工具的设计过程(设计者)和调度过程(调度者)。
- 基于中国金融市场数据构建了Data-Copilot Demo。
自主设计并执行工作流
不妨以下面这个例子来看看Data-Copilot的表现:
今年一季度上证50指数的所有成分股的净利润增长率同比是多少
Data-Copilot自主设计了这样的工作流:
图片
针对这个复杂的问题,Data-Copilot采用了loop_rank这个接口来实现多次循环查询。
Data-Copilot执行该工作流后得到了这样的结果:
其中横坐标是每只成分股的名字,纵坐标是一季度的净利润同比增长率
图片
除了一般的数据处理过程之外,Data-Copilot还能生成种类丰富的工作流程。
研究团队以预测和并行两种工作流模式分别对Data-Copilot进行了测试。
预测工作流
对于已知数据之外的部分,Data-Copilot也可以进行预测,比如输入下面这个问题:
预测下面四个季度的中国季度GDP
Data-Copilot部署了这样的工作流:
获取历史GDP数据→采用线性回归模型预测未来→输出表格
图片
执行之后的结果如下:
图片
并行工作流
我想看看最近三年宁德时代和贵州茅台的市盈率
对应的工作流是:
获取股价数据→计算相关指数→生成图表
图片
两支股的相关工作是同时并行的,最后得到的如下的图表:
图片
主要方法
Data-Copilot是一个通用的大语言模型系统,具有接口设计和接口调度两个主要阶段。
- 接口设计:研究团队设计了一个self-request的过程,使LLM能够自主地从少量种子请求生成足够的请求。然后,LLM根据生成的请求进行迭代式的设计和优化接口。这些接口使用自然语言描述,使它们易于扩展和在不同平台之间转移。
- 接口调度:在接收到用户请求后,LLM根据自设计的接口描述和in context demonstration来规划和调用接口工具,部署一个满足用户需求的工作流,并以多种形式呈现结果给用户。
Data-Copilot通过自动生成请求和自主设计接口的方式,实现了高度自动化的数据处理和可视化,满足用户的需求并以多种形式向用户展示结果。
图片
接口设计
如上图所示,首先要实现数据管理,第一步需要接口工具。
Data-Copilot会自己设计了大量接口作为数据管理的工具,其中接口是由自然语言(功能描述)和代码(实现)组成的模块,负责数据获取、处理等任务。
- 首先,LLM通过少量的种子请求并自主生成大量请求(explore data by self-request),尽可能覆盖各种应用场景。
- 然后,LLM为这些请求设计相应的接口(interface definition:只包括描述和参数),并在每次迭代中逐步优化接口设计(interface merge)。
- 最后,研究人员利用LLM强大的代码生成能力为接口库中的每个接口生成具体的代码(interface implementation)。这个过程将接口的设计与具体的实现分离开来,创建了一套多功能的接口工具,可以满足大多数请求。
如下图:Data-Copilot自己设计的接口工具用于数据处理
图片
接口调度
在前一个阶段,研究人员获取了用于数据获取、处理和可视化的各种通用接口工具。每个接口都有清晰明确的功能描述。如上图所示的两个查询请问,Data-Copilot通过实时请求中的规划和调用不同的接口,形成了从数据到多种形式结果的工作流程。
- Data-Copilot首先进行意图分析来准确理解用户的请求。
- 一旦准确理解了用户的意图,Data-Copilot将规划一个合理的工作流程来处理用户的请求。Data-Copilot会生成一个固定格式的JSON,代表调度的每个步骤,例如step={“arg”:””, “function”:””, “output”:”” ,”description”:””}。
在接口描述和示例的指导下,Data-Copilot在每个步骤内以顺序或并行的方式精心安排接口的调度。
Data-Copilot通过将LLMs整合到数据相关任务的每个阶段中,根据用户的请求将原始数据自动转化为用户友好的可视化结果,显著减少了对繁琐劳动和专业知识的依赖。
GitHub项目页:https://github.com/zwq2018/Data-Copilot
论文地址:https://arxiv.org/abs/2306.07209
HuggingFace DEMO:https://huggingface.co/spaces/zwq2018/Data-Copilot
以上是一句话搞定数据分析,浙大全新大模型数据助手,连搜集都省了的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP
