清华&中国气象局大模型登Nature:解决世界级难题,「鬼天气」预报时效首次达3小时
真·“未雨绸缪”,清华大学「鬼天气」预报大模型来了!
是能破解世界未解难题的那种——
公里尺度下0~3小时极端降水都能预报。
包括短时强降水、暴风雨、暴雪、冰雹等在内的极端降水天气,都能做到提前预警。
图片
完成这项研究可实属不易。
清华大学软件学院与国家气象中心、国家气象信息中心合作,联合攻关三年才提出这个名为NowcastNet的极端降水临近预报大模型,并用了近六年的雷达观测资料完成了模型的训练。
在全国62位气象预报专家的过程检验中,该方法大幅领先国际上的同类方法,研究成果现已登Nature。
图片
目前,NowcastNet已经在国家气象中心短临预报业务平台(SWAN 3.0)部署上线,将为全国极端降水天气短临预报业务提供支撑。
那么极端降水的临近预报为什么这么难?清华团队又是如何解决这一难题的?
为什么被列为科学难题?
近年来,受全球气候变化影响,极端降水天气频发,实现更准确、更精细和更长预警提前量的降水临近预报成为人们的关注点。
由于极端降水天气过程大多只持续几十分钟且空间尺度在几公里范围,受到对流、气旋、地形等复杂过程和大气系统混沌效应的影响较为严重。
而基于物理方程模拟的数值预报技术很难对公里尺度的极端降水做出有效预报。
因此,在今年5月27日世界气象组织峰会上,三小时内降水临近预报就被列为了未解决的重要科学难题之一。
△基于雷达观测的降水临近预报是世界性难题之一
此前也有预测极端降水天气的方法。
数值计算和深度学习就是降水临近预报的两类主流方法,但均存在明显的缺陷:
数值计算方法难以有效建模降水过程的时空多尺度特征,同时受到预报累积误差的制约,预报时效往往在一小时以内。
深度学习方法虽然擅长建模非线性系统,但统计模型存在固有的小样本过平滑问题,预报求解过程缺少物理守恒规律约束,生成的数值场模糊失真严重,难以提供有业务价值的极端降水预报。
临近预报大模型NowcastNet
针对上述挑战,2017年起,清华大学软件学院王建民教授、龙明盛副教授团队就与国家气象中心、国家气象信息中心建立研究团队,就人工智能技术在气象大数据的应用开展合作。
经过三年联合攻关,提出了临近预报大模型NowcastNet,并在美国和中国近六年雷达观测资料上完成了训练。
该模型的核心是端到端建模降水物理过程的神经演变算子,实现了深度学习与物理规律的无缝融合。
△物理建模与深度学习融合的临近预报大模型NowcastNet
具体而言,研究团队首先设计了中尺度演变网络,用以建模平流运动等物理性质更显著的中尺度降水过程,并基于物质连续性方程(即质量守恒定律)设计了神经演变算子,端到端模拟降水过程中的十公里尺度运动,并通过反向传播最小化预报累积误差。
其次,研究团队提出了对流尺度生成网络,以中尺度演变网络预测结果为条件,通过概率生成模型进一步捕捉对流生消等混沌效应更显著的公里尺度降水过程。
得益于上述融合设计,该模型兼具深度学习与物理建模的优势,在国际上首次将降水临近预报的时效延长至3小时(上文提到,此前数值计算方法通常在1小时内),并弥补了极端降水预报的短板。
为了充分检验临近预报大模型NowcastNet对典型天气过程的业务指导价值,国家气象中心邀请了62位来自23个省市气象台的一线预报专家,针对中美两国2400个极端降水过程进行了后验检验和先验检验,并与目前业务中使用的方法进行了对比。
目前世界各地气象中心广泛采用的预报系统包括基于平流的pySTEPS方法。PredRNN是一种数据驱动的神经网络,已在中国气象局部署。DGMR模型是谷歌DeepMind与英国气象局合作提出的。
所有模型都在美国和中国降水事件的大型雷达数据集上进行训练和测试。
图片
△气象专家检验结果和数值指标评测结果,CSI用于衡量预报的位置准确性;PSD用于衡量预报的频谱特征与雷达观测的降水变化性之间的比较。
正如上图所示,NowcastNet在临界成功指数(CSI)、能量谱密度(PSD)等数值指标上全面超越现有技术,在71%的天气过程中被认为具有最高的预报价值。
在极端降水过程中,NowcastNet是唯一展现较强业务价值的临近预报技术。
以中美两国的典型极端天气过程为例:
2021年5月14日23时40分,中国江淮地区出现强降水过程,湖北、安徽等多个地区发布了暴雨红色预警,NowcastNet可以准确预测出三个强降水超级单体的变化过程。
图片
△a. 预测的地理信息、b. 不同模型在T+1小时、T+2小时和T+3小时上的预测结果、c. CSI是一种用于评估预测准确性的指标
2021年12月11日9时30分,美国中部地区突发龙卷风灾害,造成89人死亡、676人受伤,NowcastNet可以对强降水的强度、落区和运动形态等给出更清晰、更准确的预报结果。
图片
检验表明,NowcastNet对于极端灾害天气的精准防控具有良好的指导意义。
目前,该研究成果以“高技巧极端降水临近预报大模型”(Skilful Nowcasting of Extreme Precipitation with NowcastNet)为题发表在《自然》(Nature)上,同时被《自然·新闻和观点》以“The Outlook for AI Weather Prediction”为题做了报道。
研究人员认为:
该研究探索了数据驱动与物理驱动的“科学学习”新范式,提出了物理守恒约束下时空物质场建模和预测的一般方法,对其他具有多尺度物理特性的问题也具有应用前景。
他们还表示:
未来将进一步推进该方案在物理问题求解、大气海洋模拟、工业设计仿真等场景下的应用。
团队信息
清华大学软件学院王建民教授、龙明盛副教授,以及机器学习泰斗、加州大学伯克利分校教授、清华大学荣誉教授Michael I. Jordan为论文的通讯作者。
清华大学软件学院博士生张育宸和龙明盛副教授为论文的第一作者,硕士生陈凯源、邢蓝翔参加了研究工作。
国家气象中心金荣花研究员提供了气象知识和数据支持并主持了全国范围内气象专家检验工作,罗兵、张小玲、薛峰、盛杰、韩丰、张小雯等专家为研究工作提供了指导、建议和帮助。
这项研究受到了国家自然科学基金创新研究群体项目、优秀青年科学基金项目以及大数据系统软件国家工程研究中心的支持。
论文链接:https://www.nature.com/articles/s41586-023-06184-4
以上是清华&中国气象局大模型登Nature:解决世界级难题,「鬼天气」预报时效首次达3小时的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名
