目录
(*http2Transport).NewClientConn
(*http2Transport).RoundTrip
(http2noDialClientConnPool).GetClientConn
(*http2ClientConn).roundTrip
总结
首页 后端开发 Golang Go发起HTTP2.0请求流程分析(前篇)

Go发起HTTP2.0请求流程分析(前篇)

Jul 21, 2023 pm 04:14 PM
go http请求

(*Transport).roundTrip

(*Transport).roundTrip方法会调用t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)初始化TLSClientConfig以及h2transport,而这两者都和HTTP2.0有着紧密的联系。

TLSClientConfig: 初始化client支持的http协议, 并在tls握手时告知server。

h2transport: 如果本次请求是http2,那么h2transport会接管连接,请求和响应的处理逻辑。

下面看看源码:

func (t *Transport) onceSetNextProtoDefaults() {
// ...此处省略代码...
	t2, err := http2configureTransport(t)
if err != nil {
		log.Printf("Error enabling Transport HTTP/2 support: %v", err)
return
	}
	t.h2transport = t2

// ...此处省略代码...
}
func http2configureTransport(t1 *Transport) (*http2Transport, error) {
	connPool := new(http2clientConnPool)
	t2 := &http2Transport{
		ConnPool: http2noDialClientConnPool{connPool},
		t1:       t1,
	}
	connPool.t = t2
if err := http2registerHTTPSProtocol(t1, http2noDialH2RoundTripper{t2}); err != nil {
return nil, err
	}
if t1.TLSClientConfig == nil {
		t1.TLSClientConfig = new(tls.Config)
	}
if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
		t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
	}
if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
		t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
	}
	upgradeFn := func(authority string, c *tls.Conn) RoundTripper {
		addr := http2authorityAddr("https", authority)
if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
go c.Close()
return http2erringRoundTripper{err}
		} else if !used {
// Turns out we don't need this c.
// For example, two goroutines made requests to the same host
// at the same time, both kicking off TCP dials. (since protocol
// was unknown)
go c.Close()
		}
return t2
	}
if m := t1.TLSNextProto; len(m) == 0 {
		t1.TLSNextProto = map[string]func(string, *tls.Conn) RoundTripper{
"h2": upgradeFn,
		}
	} else {
		m["h2"] = upgradeFn
	}
return t2, nil
}
登录后复制

笔者将上述的源码简单拆解为以下几个步骤:

  1. 新建一个http2clientConnPool并复制给t2,以后http2的请求会优先从该连接池中获取连接。

  2. 初始化TLSClientConfig,并将支持的h2http1.1协议添加到TLSClientConfig.NextProtos中。

  3. 定义一个h2upgradeFn存储到t1.TLSNextProto里。

鉴于前一篇文章对新建连接前的步骤有了较为详细的介绍,所以这里直接看和server建立连接的部分源码,即(*Transport).dialConn方法:

func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
// ...此处省略代码...
if cm.scheme() == "https" && t.hasCustomTLSDialer() {
// ...此处省略代码...
	} else {
		conn, err := t.dial(ctx, "tcp", cm.addr())
if err != nil {
return nil, wrapErr(err)
		}
		pconn.conn = conn
if cm.scheme() == "https" {
var firstTLSHost string
if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
return nil, wrapErr(err)
			}
if err = pconn.addTLS(firstTLSHost, trace); err != nil {
return nil, wrapErr(err)
			}
		}
	}

// Proxy setup.
// ...此处省略代码...

if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil
		}
	}

// ...此处省略代码...
}
登录后复制

笔者对上述的源码描述如下:

  1. 调用t.dial(ctx, "tcp", cm.addr())创建TCP连接。

  2. 如果是https的请求, 则对请求建立安全的tls传输通道。

  3. 检查tls的握手状态,如果和server协商的NegotiatedProtocol协议不为空,且client的t.TLSNextProto有该协议,则返回alt不为空的持久连接(HTTP1.1不会进入if条件里)。

笔者对上述的第三点进行展开。经笔者在本地debug验证,当client和server都支持http2时,s.NegotiatedProtocol的值为h2s.NegotiatedProtocolIsMutual的值为true

在上面分析http2configureTransport函数时,我们知道TLSNextProto注册了一个key为h2的函数,所以调用next实际就是调用前面的upgradeFn函数。

upgradeFn会调用connPool.addConnIfNeeded向http2的连接池添加一个tls传输通道,并最终返回前面已经创建好的t2http2Transport

func (p *http2clientConnPool) addConnIfNeeded(key string, t *http2Transport, c *tls.Conn) (used bool, err error) {
	p.mu.Lock()
// ...此处省略代码...
// 主要用于判断是否有必要像连接池添加新的连接
// 判断连接池中是否已有同host连接,如果有且该链接能够处理新的请求则直接返回
	call, dup := p.addConnCalls[key]
if !dup {
// ...此处省略代码...
		call = &http2addConnCall{
			p:    p,
			done: make(chan struct{}),
		}
		p.addConnCalls[key] = call
go call.run(t, key, c)
	}
	p.mu.Unlock()

	<-call.done
if call.err != nil {
return false, call.err
	}
return !dup, nil
}
func (c *http2addConnCall) run(t *http2Transport, key string, tc *tls.Conn) {
	cc, err := t.NewClientConn(tc)

	p := c.p
	p.mu.Lock()
if err != nil {
		c.err = err
	} else {
		p.addConnLocked(key, cc)
	}
delete(p.addConnCalls, key)
	p.mu.Unlock()
close(c.done)
}
登录后复制

分析上述的源码我们能够得到两点结论:

  1. 执行完upgradeFn之后,(*Transport).dialConn返回的持久化连接中alt字段已经不是nil了。

  2. t.NewClientConn(tc)新建出来的连接会保存在http2的连接池即http2clientConnPool中,下一小结将对NewClientConn展开分析。

最后我们回到(*Transport).roundTrip方法并分析其中的关键源码:

func (t *Transport) roundTrip(req *Request) (*Response, error) {
	t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
// ...此处省略代码...
for {
select {
case <-ctx.Done():
			req.closeBody()
return nil, ctx.Err()
default:
		}

// ...此处省略代码...
		pconn, err := t.getConn(treq, cm)
if err != nil {
			t.setReqCanceler(req, nil)
			req.closeBody()
return nil, err
		}

var resp *Response
if pconn.alt != nil {
// HTTP/2 path.
			t.setReqCanceler(req, nil) // not cancelable with CancelRequest
			resp, err = pconn.alt.RoundTrip(req)
		} else {
			resp, err = pconn.roundTrip(treq)
		}
if err == nil {
return resp, nil
		}

// ...此处省略代码...
	}
}
登录后复制

结合前面的分析,pconn.alt在server和client都支持http2协议的情况下是不为nil的。所以,http2的请求会走pconn.alt.RoundTrip(req)分支,也就是说http2的请求流程就被http2Transport接管啦。

(*http2Transport).NewClientConn

(*http2Transport).NewClientConn内部会调用t.newClientConn(c, t.disableKeepAlives())

因为本节内容较多,所以笔者不再一次性贴出源码,而是按关键步骤分析并分块儿贴出源码。

1、初始化一个http2ClientConn

cc := &http2ClientConn{
	t:                     t,
	tconn:                 c,
	readerDone:            make(chan struct{}),
	nextStreamID:          1,
	maxFrameSize:          16 << 10,           // spec default
	initialWindowSize:     65535,              // spec default
	maxConcurrentStreams:  1000,               // "infinite", per spec. 1000 seems good enough.
	peerMaxHeaderListSize: 0xffffffffffffffff, // "infinite", per spec. Use 2^64-1 instead.
	streams:               make(map[uint32]*http2clientStream),
	singleUse:             singleUse,
	wantSettingsAck:       true,
	pings:                 make(map[[8]byte]chan struct{}),
}
登录后复制

上面的源码新建了一个默认的http2ClientConn。

initialWindowSize:初始化窗口大小为65535,这个值之后会初始化每一个数据流可发送的数据窗口大小。

maxConcurrentStreams:表示每个连接上允许最多有多少个数据流同时传输数据。

streams:当前连接上的数据流。

singleUse: 控制http2的连接是否允许多个数据流共享,其值由t.disableKeepAlives()控制。

2、创建一个条件锁并且新建Writer&Reader。

cc.cond = sync.NewCond(&cc.mu)
cc.flow.add(int32(http2initialWindowSize))
cc.bw = bufio.NewWriter(http2stickyErrWriter{c, &cc.werr})
cc.br = bufio.NewReader(c)
登录后复制

新建Writer&Reader没什么好说的,需要注意的是cc.flow.add(int32(http2initialWindowSize))

cc.flow.add将当前连接的可写流控制窗口大小设置为http2initialWindowSize,即65535。

3、新建一个读写数据帧的Framer。

cc.fr = http2NewFramer(cc.bw, cc.br)
cc.fr.ReadMetaHeaders = hpack.NewDecoder(http2initialHeaderTableSize, nil)
cc.fr.MaxHeaderListSize = t.maxHeaderListSize()
登录后复制

4、向server发送开场白,并发送一些初始化数据帧。

initialSettings := []http2Setting{
	{ID: http2SettingEnablePush, Val: 0},
	{ID: http2SettingInitialWindowSize, Val: http2transportDefaultStreamFlow},
}
if max := t.maxHeaderListSize(); max != 0 {
	initialSettings = append(initialSettings, http2Setting{ID: http2SettingMaxHeaderListSize, Val: max})
}

cc.bw.Write(http2clientPreface)
cc.fr.WriteSettings(initialSettings...)
cc.fr.WriteWindowUpdate(0, http2transportDefaultConnFlow)
cc.inflow.add(http2transportDefaultConnFlow + http2initialWindowSize)
cc.bw.Flush()
登录后复制

client向server发送的开场白内容如下:

const (
// client首先想server发送以PRI开头的一串字符串。
    http2ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
)
var (
	http2clientPreface = []byte(http2ClientPreface)
)
登录后复制

发送完开场白后,client向server发送SETTINGS数据帧。

http2SettingEnablePush: 告知server客户端是否开启push功能。

http2SettingInitialWindowSize:告知server客户端可接受的最大数据窗口是http2transportDefaultStreamFlow(4M)。

发送完SETTINGS数据帧后,发送WINDOW_UPDATE数据帧, 因为第一个参数为0即streamID为0,则是告知server此连接可接受的最大数据窗口为http2transportDefaultConnFlow(1G)。

发送完WINDOW_UPDATE数据帧后,将client的可读流控制窗口大小设置为http2transportDefaultConnFlow + http2initialWindowSize

5、开启读循环并返回

go cc.readLoop()
登录后复制

(*http2Transport).RoundTrip

(*http2Transport).RoundTrip只是一个入口函数,它会调用(*http2Transport). RoundTripOpt方法。

(*http2Transport). RoundTripOpt有两个步骤比较关键:

t.connPool().GetClientConn(req, addr): 在http2的连接池里面获取一个可用连接,其中连接池的类型为http2noDialClientConnPool,参考http2configureTransport函数。

cc.roundTrip(req): 通过获取到的可用连接发送请求并返回响应。

(http2noDialClientConnPool).GetClientConn

根据实际的debug结果(http2noDialClientConnPool).GetClientConn最终会调用(*http2clientConnPool).getClientConn(req *Request, addr string, dialOnMiss bool)

通过(http2noDialClientConnPool).GetClientConn获取连接时传递给(*http2clientConnPool).getClientConn方法的第三个参数始终为false,该参数为false时代表着即使无法正常获取可用连接,也不在这个环节重新发起拨号流程。

在(*http2clientConnPool).getClientConn中会遍历同地址的连接,并判断连接的状态从而获取一个可以处理请求的连接。

for _, cc := range p.conns[addr] {
if st := cc.idleState(); st.canTakeNewRequest {
if p.shouldTraceGetConn(st) {
			http2traceGetConn(req, addr)
		}
		p.mu.Unlock()
return cc, nil
	}
}
登录后复制

cc.idleState()判断当前连接池中的连接能否处理新的请求:

1、当前连接是否能被多个请求共享,如果仅单个请求使用且已经有一个数据流,则当前连接不能处理新的请求。

if cc.singleUse && cc.nextStreamID > 1 {
return
}
登录后复制

2、以下几点均为true时,才代表当前连接能够处理新的请求:

  • 连接状态正常,即未关闭并且不处于正在关闭的状态。

  • 当前连接正在处理的数据流小于maxConcurrentStreams

  • 下一个要处理的数据流 + 当前连接处于等待状态的请求*2 < math.MaxInt32。

  • 当前连接没有长时间处于空闲状态(主要通过cc.tooIdleLocked()判断)。

st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32 &&
		!cc.tooIdleLocked()
登录后复制

当从链接池成功获取到一个可以处理请求的连接,就可以和server进行数据交互,即(*http2ClientConn).roundTrip流程。

(*http2ClientConn).roundTrip

1、在真正开始处理请求前,还要进行header检查,http2对http1.1的某些header是不支持的,笔者就不对这个逻辑进行分析了,直接上源码:

func http2checkConnHeaders(req *Request) error {
if v := req.Header.Get("Upgrade"); v != "" {
return fmt.Errorf("http2: invalid Upgrade request header: %q", req.Header["Upgrade"])
	}
if vv := req.Header["Transfer-Encoding"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && vv[0] != "chunked") {
return fmt.Errorf("http2: invalid Transfer-Encoding request header: %q", vv)
	}
if vv := req.Header["Connection"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && !strings.EqualFold(vv[0], "close") && !strings.EqualFold(vv[0], "keep-alive")) {
return fmt.Errorf("http2: invalid Connection request header: %q", vv)
	}
return nil
}
func http2commaSeparatedTrailers(req *Request) (string, error) {
	keys := make([]string, 0, len(req.Trailer))
for k := range req.Trailer {
		k = CanonicalHeaderKey(k)
switch k {
case "Transfer-Encoding", "Trailer", "Content-Length":
return "", &http2badStringError{"invalid Trailer key", k}
		}
		keys = append(keys, k)
	}
if len(keys) > 0 {
		sort.Strings(keys)
return strings.Join(keys, ","), nil
	}
return "", nil
}
登录后复制

2、调用(*http2ClientConn).awaitOpenSlotForRequest,一直等到当前连接处理的数据流小于maxConcurrentStreams, 如果此函数返回错误,则本次请求失败。

2.1、double check当前连接可用。

if cc.closed || !cc.canTakeNewRequestLocked() {
if waitingForConn != nil {
close(waitingForConn)
	}
return http2errClientConnUnusable
}
登录后复制

2.2、如果当前连接处理的数据流小于maxConcurrentStreams则直接返回nil。笔者相信大部分逻辑走到这儿就返回了。

if int64(len(cc.streams))+1 <= int64(cc.maxConcurrentStreams) {
if waitingForConn != nil {
close(waitingForConn)
	}
return nil
}
登录后复制

2.3、如果当前连接处理的数据流确实已经达到上限,则开始进入等待流程。

if waitingForConn == nil {
	waitingForConn = make(chan struct{})
go func() {
if err := http2awaitRequestCancel(req, waitingForConn); err != nil {
			cc.mu.Lock()
			waitingForConnErr = err
			cc.cond.Broadcast()
			cc.mu.Unlock()
		}
	}()
}
cc.pendingRequests++
cc.cond.Wait()
cc.pendingRequests--
登录后复制

通过上面的逻辑知道,当前连接处理的数据流达到上限后有两种情况,一是等待请求被取消,二是等待其他请求结束。如果有其他数据流结束并唤醒当前等待的请求,则重复2.1、2.2和2.3的步骤。

3、调用cc.newStream()在连接上创建一个数据流(创建数据流是线程安全的,因为源码中在调用awaitOpenSlotForRequest之前先加锁,直到写入请求的header之后才释放锁)。

func (cc *http2ClientConn) newStream() *http2clientStream {
	cs := &http2clientStream{
		cc:        cc,
		ID:        cc.nextStreamID,
		resc:      make(chan http2resAndError, 1),
		peerReset: make(chan struct{}),
		done:      make(chan struct{}),
	}
	cs.flow.add(int32(cc.initialWindowSize))
	cs.flow.setConnFlow(&cc.flow)
	cs.inflow.add(http2transportDefaultStreamFlow)
	cs.inflow.setConnFlow(&cc.inflow)
	cc.nextStreamID += 2
	cc.streams[cs.ID] = cs
return cs
}
登录后复制

笔者对上述代码简单描述如下:

  • 新建一个http2clientStream,数据流ID为cc.nextStreamID,新建数据流后,cc.nextStreamID +=2

  • 数据流通过http2resAndError管道接收请求的响应。

  • 初始化当前数据流的可写流控制窗口大小为cc.initialWindowSize,并保存连接的可写流控制指针。

  • 初始化当前数据流的可读流控制窗口大小为http2transportDefaultStreamFlow,并保存连接的可读流控制指针。

  • 最后将新建的数据流注册到当前连接中。

4、调用cc.t.getBodyWriterState(cs, body)会返回一个http2bodyWriterState结构体。通过该结构体可以知道请求body是否发送成功。

func (t *http2Transport) getBodyWriterState(cs *http2clientStream, body io.Reader) (s http2bodyWriterState) {
	s.cs = cs
if body == nil {
return
	}
	resc := make(chan error, 1)
	s.resc = resc
	s.fn = func() {
		cs.cc.mu.Lock()
		cs.startedWrite = true
		cs.cc.mu.Unlock()
		resc <- cs.writeRequestBody(body, cs.req.Body)
	}
	s.delay = t.expectContinueTimeout()
if s.delay == 0 ||
		!httpguts.HeaderValuesContainsToken(
			cs.req.Header["Expect"],
"100-continue") {
return
	}
// 此处省略代码,因为绝大部分请求都不会设置100-continue的标头
return
}
登录后复制

s.fn: 标记当前数据流开始写入数据,并且将请求body的发送结果写入s.resc管道(本文暂不对writeRequestBody展开分析,下篇文章会对其进行分析)。

5、因为是多个请求共享一个连接,那么向连接写入数据帧时需要加锁,比如加锁写入请求头。

cc.wmu.Lock()
endStream := !hasBody && !hasTrailers
werr := cc.writeHeaders(cs.ID, endStream, int(cc.maxFrameSize), hdrs)
cc.wmu.Unlock()
登录后复制

6、如果有请求body,则开始写入请求body,没有请求body则设置响应header的超时时间(有请求body时,响应header的超时时间需要在请求body写完之后设置)。

if hasBody {
	bodyWriter.scheduleBodyWrite()
} else {
	http2traceWroteRequest(cs.trace, nil)
if d := cc.responseHeaderTimeout(); d != 0 {
		timer := time.NewTimer(d)
defer timer.Stop()
		respHeaderTimer = timer.C
	}
}
登录后复制

scheduleBodyWrite的内容如下:

func (s http2bodyWriterState) scheduleBodyWrite() {
if s.timer == nil {
// We&#39;re not doing a delayed write (see
// getBodyWriterState), so just start the writing
// goroutine immediately.
go s.fn()
return
	}
	http2traceWait100Continue(s.cs.trace)
if s.timer.Stop() {
		s.timer.Reset(s.delay)
	}
}
登录后复制

因为笔者的请求header中没有携带100-continue标头,所以在前面的getBodyWriterState函数中初始化的s.timer为nil即调用scheduleBodyWrite会立即开始发送请求body。

7、轮询管道获取响应结果。

在看轮询源码之前,先看一个简单的函数:

handleReadLoopResponse := func(re http2resAndError) (*Response, bool, error) {
	res := re.res
if re.err != nil || res.StatusCode > 299 {
		bodyWriter.cancel()
		cs.abortRequestBodyWrite(http2errStopReqBodyWrite)
	}
if re.err != nil {
		cc.forgetStreamID(cs.ID)
return nil, cs.getStartedWrite(), re.err
	}
	res.Request = req
	res.TLS = cc.tlsState
return res, false, nil
}
登录后复制

该函数主要就是判断读到的响应是否正常,并根据响应的结果构造(*http2ClientConn).roundTrip的返回值。

了解了handleReadLoopResponse之后,下面就看看轮询的逻辑:

for {
select {
case re := <-readLoopResCh:
return handleReadLoopResponse(re)
// 此处省略代码(包含请求取消,请求超时等管道的轮询)
case err := <-bodyWriter.resc:
// Prefer the read loop&#39;s response, if available. Issue 16102.
select {
case re := <-readLoopResCh:
return handleReadLoopResponse(re)
default:
		}
if err != nil {
			cc.forgetStreamID(cs.ID)
return nil, cs.getStartedWrite(), err
		}
		bodyWritten = true
if d := cc.responseHeaderTimeout(); d != 0 {
			timer := time.NewTimer(d)
defer timer.Stop()
			respHeaderTimer = timer.C
		}
	}
}
登录后复制

笔者仅对上面的第二种情况即请求body发送完成进行描述:

  • 能否读到响应,如果能够读取响应则直接返回。

  • 判断请求body是否发送成功,如果发送失败,直接返回。

  • 如果请求body发送成功,则设置响应header的超时时间。

总结

本文主要描述了两个方面的内容:

  1. 确认client和server都支持http2协议,并构建一个http2的连接,同时开启该连接的读循环。

  2. 通过http2连接池获取一个http2连接,并发送请求和读取响应。

以上是Go发起HTTP2.0请求流程分析(前篇)的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用 Golang 为 HTTP 请求设置查询参数 使用 Golang 为 HTTP 请求设置查询参数 Jun 02, 2024 pm 03:27 PM

在Go中为HTTP请求设置查询参数,可以使用http.Request.URL.Query().Set()方法,该方法接受查询参数名称和值作为参数。具体步骤包括:创建一个新的HTTP请求。使用Query().Set()方法设置查询参数。对请求进行编码。执行请求。获取查询参数的值(可选)。删除查询参数(可选)。

Go WebSocket 消息如何发送? Go WebSocket 消息如何发送? Jun 03, 2024 pm 04:53 PM

在Go中,可以使用gorilla/websocket包发送WebSocket消息。具体步骤:建立WebSocket连接。发送文本消息:调用WriteMessage(websocket.TextMessage,[]byte("消息"))。发送二进制消息:调用WriteMessage(websocket.BinaryMessage,[]byte{1,2,3})。

深入理解 Golang 函数生命周期与变量作用域 深入理解 Golang 函数生命周期与变量作用域 Apr 19, 2024 am 11:42 AM

在Go中,函数生命周期包括定义、加载、链接、初始化、调用和返回;变量作用域分为函数级和块级,函数内的变量在内部可见,而块内的变量仅在块内可见。

Golang 技术性能优化中如何避免内存泄漏? Golang 技术性能优化中如何避免内存泄漏? Jun 04, 2024 pm 12:27 PM

内存泄漏会导致Go程序内存不断增加,可通过:关闭不再使用的资源,如文件、网络连接和数据库连接。使用弱引用防止内存泄漏,当对象不再被强引用时将其作为垃圾回收目标。利用go协程,协程栈内存会在退出时自动释放,避免内存泄漏。

如何在 Go 中使用正则表达式匹配时间戳? 如何在 Go 中使用正则表达式匹配时间戳? Jun 02, 2024 am 09:00 AM

在Go中,可以使用正则表达式匹配时间戳:编译正则表达式字符串,例如用于匹配ISO8601时间戳的表达式:^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$。使用regexp.MatchString函数检查字符串是否与正则表达式匹配。

Golang 与 Go 语言的区别 Golang 与 Go 语言的区别 May 31, 2024 pm 08:10 PM

Go和Go语言是不同的实体,具有不同的特性。Go(又称Golang)以其并发性、编译速度快、内存管理和跨平台优点而闻名。Go语言的缺点包括生态系统不如其他语言丰富、语法更严格以及缺乏动态类型。

Go 并发函数的单元测试指南 Go 并发函数的单元测试指南 May 03, 2024 am 10:54 AM

对并发函数进行单元测试至关重要,因为这有助于确保其在并发环境中的正确行为。测试并发函数时必须考虑互斥、同步和隔离等基本原理。可以通过模拟、测试竞争条件和验证结果等方法对并发函数进行单元测试。

golang框架文档最佳实践 golang框架文档最佳实践 Jun 04, 2024 pm 05:00 PM

编写清晰全面的文档对于Golang框架至关重要。最佳实践包括:遵循既定文档风格,例如Google的Go编码风格指南。使用清晰的组织结构,包括标题、子标题和列表,并提供导航。提供全面准确的信息,包括入门指南、API参考和概念。使用代码示例说明概念和使用方法。保持文档更新,跟踪更改并记录新功能。提供支持和社区资源,例如GitHub问题和论坛。创建实际案例,如API文档。

See all articles