阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

发布: 2023-08-10 15:20:52
转载
1016 人浏览过

前不久在我们技术交流群有群友提到最近他面试阿里70万总包的数据岗位,对方问Pandas5Pandas5数据合并的函数,结果他只答出了2数据合并

的函数,结果他只答出了2个。

那么,究竟是哪五个呢?今天,我们就来带大家了解一下!

目录:

  • 1. concat

  • 2. append

  • 3. merge

  • 4. join

  • 5. combine

  • 总结

阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

1. concat🎜

concatpandas中专门用于数据连接合并的函数,功能非常强大,支持纵向合并横向合并,默认情况下是纵向合并,具体可以通过参数进行设置。concatpandas中专门用于数据连接合并的函数,功能非常强大,支持纵向合并横向合并,默认情况下是纵向合并,具体可以通过参数进行设置。

pd.concat(
    objs: 'Iterable[NDFrame] | Mapping[Hashable, NDFrame]',
    axis=0,
    join='outer',
    ignore_index: 'bool' = False,
    keys=None,
    levels=None,
    names=None,
    verify_integrity: 'bool' = False,
    sort: 'bool' = False,
    copy: 'bool' = True,
) -> 'FrameOrSeriesUnion'
登录后复制

在函数方法中,各参数含义如下:

<span style="font-size: 14px;">objs</span>: 用于连接的数据,可以是<span style="font-size: 14px;">DataFrame</span><span style="font-size: 14px;">Series</span>组成的列表

<span style="font-size: 14px;">axis=0</span> : 连接的方式,默认为0也就是纵向连接,可选 1 为横向连接

<span style="font-size: 14px;">join=&#39;outer&#39;</span>:合并方式,默认为 <span style="font-size: 14px;">inner</span>也就是交集,可选 <span style="font-size: 14px;">outer</span>

In [1]: import pandas as pd

In [2]: s1 = pd.Series([&#39;a&#39;, &#39;b&#39;])

In [3]: s2 = pd.Series([&#39;c&#39;, &#39;d&#39;])

In [4]: s1
Out[4]: 
0    a
1    b
dtype: object

In [5]: s2
Out[5]: 
0    c
1    d
dtype: object

In [6]: pd.concat([s1, s2])
Out[6]: 
0    a
1    b
0    c
1    d
dtype: object

In [7]: df1 = pd.DataFrame([[&#39;a&#39;, 1], [&#39;b&#39;, 2]],
   ...:                     columns=[&#39;letter&#39;, &#39;number&#39;])

In [8]: df2 = pd.DataFrame([[&#39;c&#39;, 3], [&#39;d&#39;, 4]],
   ...:                     columns=[&#39;letter&#39;, &#39;number&#39;])

In [9]: pd.concat([df1, df2])
Out[9]: 
  letter  number
0      a       1
1      b       2
0      c       3
1      d       4
登录后复制
登录后复制
在函数方法中,各参数含义如下:

</p>objs🎜🎜: 用于连接的数据,可以是🎜🎜DataFrame🎜🎜或🎜🎜Series🎜🎜组成的列表🎜🎜

🎜axis=0🎜🎜 : 连接的方式,默认为0也就是纵向连接,可选 1 为横向连接🎜🎜

🎜join='outer'🎜🎜:合并方式,默认为 🎜🎜inner🎜🎜也就是交集,可选 🎜🎜outer🎜🎜 为并集🎜🎜

<code style="padding: 2px 4px;border-radius: 4px;margin-right: 2px;margin-left: 2px;font-family: "Operator Mono", Consolas, Monaco, Menlo, monospace;word-break: break-all;color: rgb(228, 105, 24);background-color: rgb(239, 239, 239);font-size: 0.875em;line-height: 1.6 !important;"><span style="font-size: 14px;">ignore_index</span>: 是否保留原有的索引

<span style="font-size: 14px;">keys=None</span>:连接关系,使用传递的值作为一级索引

<span style="font-size: 14px;">levels=None</span>:用于构造多级索引

<span style="font-size: 14px;">names=None</span>:索引的名称

<span style="font-size: 14px;">verify_integrity</span>: 检测索引是否重复,如果为True则有重复索引会报错

<span style="font-size: 14px;">sort</span>: 并集合并方式下,对columns排序

<span style="font-size: 14px;">copy</span>ignore_index: 是否保留原有的索引

</p>keys=None<p data-tool="mdnice编辑器" style="margin-top: 1em;margin-bottom: 1em;font-size: inherit;line-height: 1.6 !important;">:连接关系,使用传递的值作为一级索引<span data-mpa-emphasize-underline-bg-line="t" style="width: 100%;height: 6px;background-color: rgb(248, 206, 64);display: block;border-radius: 2px;margin-top: -6px;transform: translate3d(0px, -4px, 0px);">levels=None</span>:用于构造多级索引

🎜🎜names=None🎜🎜 : 索引的名称🎜🎜🎜🎜verify_integrity🎜🎜: 检测索引是否重复,如果为True则有重复索引会报错🎜🎜🎜🎜排序🎜🎜: 并集合并方式下,对列排序🎜🎜🎜🎜复制🎜🎜: 是否有深度复制🎜🎜 🎜🎜接下来,我们就函数功能进行演示🎜🎜🎜🎜🎜基础连接🎜🎜🎜🎜🎜🎜
In [1]: import pandas as pd

In [2]: s1 = pd.Series([&#39;a&#39;, &#39;b&#39;])

In [3]: s2 = pd.Series([&#39;c&#39;, &#39;d&#39;])

In [4]: s1
Out[4]: 
0    a
1    b
dtype: object

In [5]: s2
Out[5]: 
0    c
1    d
dtype: object

In [6]: pd.concat([s1, s2])
Out[6]: 
0    a
1    b
0    c
1    d
dtype: object

In [7]: df1 = pd.DataFrame([[&#39;a&#39;, 1], [&#39;b&#39;, 2]],
   ...:                     columns=[&#39;letter&#39;, &#39;number&#39;])

In [8]: df2 = pd.DataFrame([[&#39;c&#39;, 3], [&#39;d&#39;, 4]],
   ...:                     columns=[&#39;letter&#39;, &#39;number&#39;])

In [9]: pd.concat([df1, df2])
Out[9]: 
  letter  number
0      a       1
1      b       2
0      c       3
1      d       4
登录后复制
登录后复制

横向连接

In [10]: pd.concat([df1, df2], axis=1)
Out[10]: 
  letter  number letter  number
0      a       1      c       3
1      b       2      d       4
登录后复制

默认情况下,concat是取并集,如果两个数据中有个数据没有对应行或列,则会填充为空值NaN

合并交集

In [11]: df3 = pd.DataFrame([[&#39;c&#39;, 3, &#39;cat&#39;], [&#39;d&#39;, 4, &#39;dog&#39;]],
    ...:                     columns=[&#39;letter&#39;, &#39;number&#39;, &#39;animal&#39;])

In [12]: df1
Out[12]: 
  letter  number
0      a       1
1      b       2

In [13]: df3
Out[13]: 
  letter  number animal
0      c       3    cat
1      d       4    dog

In [14]: pd.concat([df1, df3], join=&#39;inner&#39;)
Out[14]: 
  letter  number
0      a       1
1      b       2
0      c       3
1      d       4
登录后复制

索引重置(不保留原有索引)

In [15]: pd.concat([df1, df3], join=&#39;inner&#39;, ignore_index=True)
Out[15]: 
  letter  number
0      a       1
1      b       2
2      c       3
3      d       4
# 以下方式和上述的输出结果等价
In [16]: pd.concat([df1, df3], join=&#39;inner&#39;).reset_index(drop=True)
Out[16]: 
  letter  number
0      a       1
1      b       2
2      c       3
3      d       4
登录后复制

指定索引

In [17]: pd.concat([df1, df3], keys=[&#39;df1&#39;,&#39;df3&#39;])
Out[17]: 
      letter  number animal
df1 0      a       1    NaN
    1      b       2    NaN
df3 0      c       3    cat
    1      d       4    dog

In [18]: pd.concat([df1, df3], keys=[&#39;df1&#39;,&#39;df3&#39;], names=[&#39;df名称&#39;,&#39;行ID&#39;])
Out[18]: 
         letter  number animal
df名称 行ID                      
df1  0        a       1    NaN
     1        b       2    NaN
df3  0        c       3    cat
     1        d       4    dog
登录后复制

检测重复

如果索引出现重复,则无法通过检测,会报错

In [19]: pd.concat([df1, df3], verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype=&#39;int64&#39;)
登录后复制

合并并集下columns排序

In [21]: pd.concat([df1, df3], sort=True)
Out[21]: 
  animal letter  number
0    NaN      a       1
1    NaN      b       2
0    cat      c       3
1    dog      d       4
登录后复制

DataFrame与Series合并

In [22]: pd.concat([df1, s1])
Out[22]: 
  letter  number    0
0      a     1.0  NaN
1      b     2.0  NaN
0    NaN     NaN    a
1    NaN     NaN    b

In [23]: pd.concat([df1, s1], axis=1)
Out[23]: 
  letter  number  0
0      a       1  a
1      b       2  b
# 新增列一般可选以下两种方式
In [24]: df1.assign(新增列=s1)
Out[24]: 
  letter  number 新增列
0      a       1   a
1      b       2   b

In [25]: df1[&#39;新增列&#39;] = s1

In [26]: df1
Out[26]: 
  letter  number 新增列
0      a       1   a
1      b       2   b
登录后复制

以上就concat函数方法的一些功能,相比之下,另外一个函数append也可以用于数据追加(纵向合并)

阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

2. append

append主要用于追加数据,是比较简单直接的数据合并方式。

df.append(
    other,
    ignore_index: &#39;bool&#39; = False,
    verify_integrity: &#39;bool&#39; = False,
    sort: &#39;bool&#39; = False,
) -> &#39;DataFrame&#39;
登录后复制

在函数方法中,各参数含义如下:

<span style="font-size: 14px;">other</span>: 用于追加的数据,可以是<span style="font-size: 14px;">DataFrame</span><span style="font-size: 14px;">Series</span>或组成的列表

<code style="padding: 2px 4px;border-radius: 4px;margin-right: 2px;margin-left: 2px;font-family: "Operator Mono", Consolas, Monaco, Menlo, monospace;word-break: break-all;color: rgb(228, 105, 24);background-color: rgb(239, 239, 239);font-size: 0.875em;line-height: 1.6 !important;"><span style="font-size: 14px;">ignore_index</span>: 是否保留原有的索引

<span style="font-size: 14px;">verify_integrity</span>: 检测索引是否重复,如果为True则有重复索引会报错

<span style="font-size: 14px;">sort</span>: 并集合并方式下,对columns排序

接下来,我们就对该函数功能进行演示

基础追加

In [41]: df1.append(df2)
Out[41]: 
  letter  number
0      a       1
1      b       2
0      c       3
1      d       4

In [42]: df1.append([df1,df2,df3])
Out[42]: 
  letter  number animal
0      a       1    NaN
1      b       2    NaN
0      a       1    NaN
1      b       2    NaN
0      c       3    NaN
1      d       4    NaN
0      c       3    cat
1      d       4    dog
登录后复制

columns重置(不保留原有索引)

In [43]: df1.append([df1,df2,df3], ignore_index=True)
Out[43]: 
  letter  number animal
0      a       1    NaN
1      b       2    NaN
2      a       1    NaN
3      b       2    NaN
4      c       3    NaN
5      d       4    NaN
6      c       3    cat
7      d       4    dog
登录后复制

检测重复

如果索引出现重复,则无法通过检测,会报错

In [44]: df1.append([df1,df2], verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype=&#39;int64&#39;)
登录后复制

索引排序

In [46]: df1.append([df1,df2,df3], sort=True)
Out[46]: 
  animal letter  number
0    NaN      a       1
1    NaN      b       2
0    NaN      a       1
1    NaN      b       2
0    NaN      c       3
1    NaN      d       4
0    cat      c       3
1    dog      d       4
登录后复制

追加Series

In [49]: s = pd.Series({&#39;letter&#39;:&#39;s1&#39;,&#39;number&#39;:9})

In [50]: s
Out[50]: 
letter    s1
number     9
dtype: object

In [51]: df1.append(s)
Traceback (most recent call last):
...
TypeError: Can only append a Series if ignore_index=True or if the Series has a name

In [53]: df1.append(s, ignore_index=True)
Out[53]: 
  letter  number
0      a       1
1      b       2
2     s1       9
登录后复制

追加字典

这个在爬虫的时候比较好使,每爬取一条数据就合并到DataFrame类似数据中存储起来

In [54]: dic = {&#39;letter&#39;:&#39;s1&#39;,&#39;number&#39;:9}

In [55]: df1.append(dic, ignore_index=True)
Out[55]: 
  letter  number
0      a       1
1      b       2
2     s1       9
登录后复制
阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

3. merge

merge函数方法类似SQL里的join,可以是pd.merge或者df.merge,区别就在于后者待合并的数据是

pd.merge(
    left: &#39;DataFrame | Series&#39;,
    right: &#39;DataFrame | Series&#39;,
    how: &#39;str&#39; = &#39;inner&#39;,
    on: &#39;IndexLabel | None&#39; = None,
    left_on: &#39;IndexLabel | None&#39; = None,
    right_on: &#39;IndexLabel | None&#39; = None,
    left_index: &#39;bool&#39; = False,
    right_index: &#39;bool&#39; = False,
    sort: &#39;bool&#39; = False,
    suffixes: &#39;Suffixes&#39; = (&#39;_x&#39;, &#39;_y&#39;),
    copy: &#39;bool&#39; = True,
    indicator: &#39;bool&#39; = False,
    validate: &#39;str | None&#39; = None,
) -> &#39;DataFrame&#39;
登录后复制

在函数方法中,关键参数含义如下:

<span style="font-size: 14px;">left</span>: 用于连接的左侧数据

<span style="font-size: 14px;">right</span>: 用于连接的右侧数据

<span style="font-size: 14px;">how</span>: 数据连接方式,默认为 inner,可选outer、left和right

<span style="font-size: 14px;">on</span>: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on

<span style="font-size: 14px;">left_on</span>: 左侧数据用于连接的关键字段

<span style="font-size: 14px;">right_on</span>: 右侧数据用于连接的关键字段

<span style="font-size: 14px;">left_index</span>: True表示左侧索引为连接关键字段

<span style="font-size: 14px;">right_index</span>: True表示右侧索引为连接关键字段

<span style="font-size: 14px;">suffixes</span>: 'Suffixes' = ('_x', '_y'),可以自由指定,就是同列名合并后列名显示后缀

<span style="font-size: 14px;">indicator</span>: 是否显示合并后某行数据的归属来源

接下来,我们就对该函数功能进行演示

基础合并

In [55]: df1 = pd.DataFrame({&#39;key&#39;: [&#39;foo&#39;, &#39;bar&#39;, &#39;bal&#39;],
    ...:                     &#39;value2&#39;: [1, 2, 3]})

In [56]: df2 = pd.DataFrame({&#39;key&#39;: [&#39;foo&#39;, &#39;bar&#39;, &#39;baz&#39;],
    ...:                     &#39;value1&#39;: [5, 6, 7]})

In [57]: df1.merge(df2)
Out[57]: 
   key  value2  value1
0  foo       1       5
1  bar       2       6
登录后复制

其他连接方式

In [58]: df1.merge(df2, how=&#39;left&#39;)
Out[58]: 
   key  value2  value1
0  foo       1     5.0
1  bar       2     6.0
2  bal       3     NaN

In [59]: df1.merge(df2, how=&#39;right&#39;)
Out[59]: 
   key  value2  value1
0  foo     1.0       5
1  bar     2.0       6
2  baz     NaN       7

In [60]: df1.merge(df2, how=&#39;outer&#39;)
Out[60]: 
   key  value2  value1
0  foo     1.0     5.0
1  bar     2.0     6.0
2  bal     3.0     NaN
3  baz     NaN     7.0

In [61]: df1.merge(df2, how=&#39;cross&#39;)
Out[61]: 
  key_x  value2 key_y  value1
0   foo       1   foo       5
1   foo       1   bar       6
2   foo       1   baz       7
3   bar       2   foo       5
4   bar       2   bar       6
5   bar       2   baz       7
6   bal       3   foo       5
7   bal       3   bar       6
8   bal       3   baz       7
登录后复制

指定连接键

可以指定单个连接键,也可以指定多个连接键

In [62]: df1 = pd.DataFrame({&#39;lkey1&#39;: [&#39;foo&#39;, &#39;bar&#39;, &#39;bal&#39;],
    ...:                     &#39;lkey2&#39;: [&#39;a&#39;, &#39;b&#39;, &#39;c&#39;],
    ...:                     &#39;value2&#39;: [1, 2, 3]})

In [63]: df2 = pd.DataFrame({&#39;rkey1&#39;: [&#39;foo&#39;, &#39;bar&#39;, &#39;baz&#39;],
    ...:                     &#39;rkey2&#39;: [&#39;a&#39;, &#39;b&#39;, &#39;c&#39;],
    ...:                     &#39;value2&#39;: [5, 6, 7]})
    
In [64]: df1
Out[64]: 
  lkey1 lkey2  value2
0   foo     a       1
1   bar     b       2
2   bal     c       3

In [65]: df2
Out[65]: 
  rkey1 rkey2  value2
0   foo     a       5
1   bar     b       6
2   baz     c       7

In [66]: df1.merge(df2, left_on=&#39;lkey1&#39;, right_on=&#39;rkey1&#39;)
Out[66]: 
  lkey1 lkey2  value2_x rkey1 rkey2  value2_y
0   foo     a         1   foo     a         5
1   bar     b         2   bar     b         6

In [67]: df1.merge(df2, left_on=[&#39;lkey1&#39;,&#39;lkey2&#39;], right_on=[&#39;rkey1&#39;,&#39;rkey2&#39;])
Out[67]: 
  lkey1 lkey2  value2_x rkey1 rkey2  value2_y
0   foo     a         1   foo     a         5
1   bar     b         2   bar     b         6
登录后复制

指定索引为键

Out[68]: df1.merge(df2, left_index=True, right_index=True)
Out[68]: 
  lkey1 lkey2  value2_x rkey1 rkey2  value2_y
0   foo     a         1   foo     a         5
1   bar     b         2   bar     b         6
2   bal     c         3   baz     c         7
登录后复制

设置重复列后缀

In [69]: df1.merge(df2, left_on=&#39;lkey1&#39;, right_on=&#39;rkey1&#39;, suffixes=[&#39;左&#39;,&#39;右&#39;])
Out[69]: 
  lkey1 lkey2  value2左 rkey1 rkey2  value2右
0   foo     a        1   foo     a        5
1   bar     b        2   bar     b        6
登录后复制

连接指示

新增一列用于显示数据来源

In [70]: df1.merge(df2, left_on=&#39;lkey1&#39;, right_on=&#39;rkey1&#39;, suffixes=[&#39;左&#39;,&#39;右&#39;], how=&#39;outer&#39;,
    ...:           indicator=True
    ...:       )
Out[70]: 
  lkey1 lkey2  value2左 rkey1 rkey2  value2右      _merge
0   foo     a      1.0   foo     a      5.0        both
1   bar     b      2.0   bar     b      6.0        both
2   bal     c      3.0   NaN   NaN      NaN   left_only
3   NaN   NaN      NaN   baz     c      7.0  right_only
登录后复制
阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

4. join

join就有点想append之于concat,用于数据合并

df.join(
    other: &#39;FrameOrSeriesUnion&#39;,
    on: &#39;IndexLabel | None&#39; = None,
    how: &#39;str&#39; = &#39;left&#39;,
    lsuffix: &#39;str&#39; = &#39;&#39;,
    rsuffix: &#39;str&#39; = &#39;&#39;,
    sort: &#39;bool&#39; = False,
) -> &#39;DataFrame&#39;
登录后复制

在函数方法中,关键参数含义如下:

<span style="font-size: 14px;">other</span>: 用于合并的右侧数据

<span style="font-size: 14px;">on</span>: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on

<span style="font-size: 14px;">how</span>: 数据连接方式,默认为 inner,可选outer、left和right

<span style="font-size: 14px;">lsuffix</span>: 左侧同名列后缀

<span style="font-size: 14px;">rsuffix</span>:右侧同名列后缀

接下来,我们就对该函数功能进行演示

In [71]: df = pd.DataFrame({&#39;key&#39;: [&#39;K0&#39;, &#39;K1&#39;, &#39;K2&#39;, &#39;K3&#39;, &#39;K4&#39;, &#39;K5&#39;],
    ...:                     &#39;A&#39;: [&#39;A0&#39;, &#39;A1&#39;, &#39;A2&#39;, &#39;A3&#39;, &#39;A4&#39;, &#39;A5&#39;]})

In [72]: other = pd.DataFrame({&#39;key&#39;: [&#39;K0&#39;, &#39;K1&#39;, &#39;K2&#39;],
    ...:                        &#39;B&#39;: [&#39;B0&#39;, &#39;B1&#39;, &#39;B2&#39;]})

In [73]: df
Out[73]: 
  key   A
0  K0  A0
1  K1  A1
2  K2  A2
3  K3  A3
4  K4  A4
5  K5  A5

In [74]: other
Out[74]: 
  key   B
0  K0  B0
1  K1  B1
2  K2  B2

In [75]: df.join(other, on=&#39;key&#39;)
Traceback (most recent call last):
...
ValueError: You are trying to merge on object and int64 columns. If you wish to proceed you should use pd.concat
登录后复制

如果想用key关键字, 则需要key是索引。。。

指定key

In [76]: df.set_index(&#39;key&#39;).join(other.set_index(&#39;key&#39;))
Out[76]: 
      A    B
key         
K0   A0   B0
K1   A1   B1
K2   A2   B2
K3   A3  NaN
K4   A4  NaN
K5   A5  NaN

In [77]: df.join(other.set_index(&#39;key&#39;), on=&#39;key&#39;)
Out[77]: 
  key   A    B
0  K0  A0   B0
1  K1  A1   B1
2  K2  A2   B2
3  K3  A3  NaN
4  K4  A4  NaN
5  K5  A5  NaN
登录后复制

指定重复列后缀

In [78]: df.join(other, lsuffix=&#39;_左&#39;, rsuffix=&#39;右&#39;)
Out[78]: 
  key_左   A key右    B
0    K0  A0   K0   B0
1    K1  A1   K1   B1
2    K2  A2   K2   B2
3    K3  A3  NaN  NaN
4    K4  A4  NaN  NaN
5    K5  A5  NaN  NaN
登录后复制

其他参数就不多做介绍了,和merge基本一样。

阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

5. combine

在数据合并的过程中,我们可能需要对对应位置的值进行一定的计算,pandas提供了combinecombine_first函数方法来进行这方面的合作操作。

df.combine(
    other: &#39;DataFrame&#39;,
    func,
    fill_value=None,
    overwrite: &#39;bool&#39; = True,
) -> &#39;DataFrame&#39;
登录后复制

比如,数据合并的时候取单元格最小的值

In [79]: df1 = pd.DataFrame({&#39;A&#39;: [0, 0], &#39;B&#39;: [4, 4]})

In [80]: df2 = pd.DataFrame({&#39;A&#39;: [1, 1], &#39;B&#39;: [3, 3]})

In [81]: df1
Out[81]: 
   A  B
0  0  4
1  0  4

In [82]: df2
Out[82]: 
   A  B
0  1  3
1  1  3

In [83]: take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2

In [84]: df1.combine(df2, take_smaller)
Out[84]: 
   A  B
0  0  3
1  0  3

# 也可以调用numpy的函数
In [85]: import numpy as np

In [86]: df1.combine(df2, np.minimum)
Out[86]: 
   A  B
0  0  3
1  0  3
登录后复制

fill_value填充缺失值

In [87]: df1 = pd.DataFrame({&#39;A&#39;: [0, 0], &#39;B&#39;: [None, 4]})

In [87]: df2 = pd.DataFrame({&#39;A&#39;: [1, 1], &#39;B&#39;: [3, 3]})

In [88]: df1
Out[88]: 
   A    B
0  0  NaN
1  0  4.0

In [89]: df2
Out[89]: 
   A  B
0  1  3
1  1  3

In [90]: df1.combine(df2, take_smaller, fill_value=-88)
Out[90]: 
   A     B
0  0 -88.0
1  0   4.0
登录后复制

overwrite=False保留

In [91]: df1 = pd.DataFrame({&#39;A&#39;: [0, 0], &#39;B&#39;: [4, 4]})

In [92]: df2 = pd.DataFrame({&#39;B&#39;: [3, 3], &#39;C&#39;: [-10, 1], }, index=[1, 2])

In [93]: df1
Out[93]: 
   A  B
0  0  4
1  0  4

In [94]: df2
Out[94]: 
   B   C
1  3 -10
2  3   1

In [95]: df1.combine(df2, take_smaller)
Out[95]: 
    A    B     C
0 NaN  NaN   NaN
1 NaN  3.0 -10.0
2 NaN  3.0   1.0
# 保留A列原有的值
In [96]: df1.combine(df2, take_smaller, overwrite=False)
Out[96]: 
     A    B     C
0  0.0  NaN   NaN
1  0.0  3.0 -10.0
2  NaN  3.0   1.0
登录后复制

另外一个combine_first

df.combine_first(other: &#39;DataFrame&#39;) -> &#39;DataFrame&#39;
登录后复制

当df中元素为空采用other里的进行替换,结果为并集合并

In [97]: df1 = pd.DataFrame({&#39;A&#39;: [None, 0], &#39;B&#39;: [None, 4]})

In [98]: df2 = pd.DataFrame({&#39;A&#39;: [1, 1], &#39;B&#39;: [3, 3]})

In [99]: df1
Out[99]: 
     A    B
0  NaN  NaN
1  0.0  4.0

In [100]: df2
Out[100]: 
   A  B
0  1  3
1  1  3

In [101]: df1.combine_first(df2)
Out[101]: 
     A    B
0  1.0  3.0
1  0.0  4.0

In [102]: df1 = pd.DataFrame({&#39;A&#39;: [None, 0], &#39;B&#39;: [4, None]})

In [103]: df2 = pd.DataFrame({&#39;B&#39;: [3, 3], &#39;C&#39;: [1, 1]}, index=[1, 2])

In [104]: df1
Out[104]: 
     A    B
0  NaN  4.0
1  0.0  NaN

In [105]: df2
Out[105]: 
   B  C
1  3  1
2  3  1

In [106]: df1.combine_first(df2)
Out[106]: 
     A    B    C
0  NaN  4.0  NaN
1  0.0  3.0  1.0
2  NaN  3.0  1.0
登录后复制
阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧

总结

以上就本次介绍的关于Pandas数据合并的全部内容,相比之下我们可以发现:

  • append主要用于纵向追加数据,比较简单直接;append主要用于纵向追加数据,比较简单直接;
  • concat功能最强大,不仅可以纵向合并数据还可以横向合并数据而且支持很多其他条件设置;
  • merge则主要用于横向合并数据,类似SQL里的join连接;
  • join则比较简单,用于横向合并数据,条件相对苛刻;
  • combine
concat功能最强大,不仅可以纵向合并数据还可以横向合并数据而且支持很多其他条件设置;
merge则主要用于横向合并数据,类似SQL里的join连接;

join则比较简单,用于横向合并数据,条件相对苛刻;
combine更像是按照元素进行合并,根据一定的条件(函数规则)来进行数据合并。
🎜🎜🎜🎜🎜🎜🎜🎜🎜🎜🎜🎜🎜🎜🎜

以上是阿里年薪70万的数据分析师必须知道的5个Pandas数据合并技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:Python当打之年
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板