技巧|Python 批量自动提取、整理 PDF 发票
本文分享一个基于 PDF 的 Python 办公自动化的案例解决,也是某位财务小姐姐提出的真实需求,先来看看需求。
需求描述
在某个文件夹下有多个 PDF 类型发票
每一张发票 PDF 是纯图片类型,里面的文字信息无法手动复制(事实上大多数发票可以复制部分文字,但我们扔以图片形式来讲解),大致如下图所示:
需要满足的需求是:获取 总金额、纳税人识别号、开票人,即如下三个方框位置:
最后结合批量操作,在获取上述信息后将其存储入 Excel 中!
思路与代码实现
需求本质是一个图片识别问题,因为 PDF 里的内容是图片类型,无法按常规方法直接把文本抽提出来。解决思路是利用光学字符识别(OCR)将图片中的文字识别出。但同时也需要注意,PDF 毕竟不是图片,为了完成 OCR,除了OCR自身之外还要下载 Ghostscript
和 ImageMagick
用来完成类型转换。已 Windows
系统为例,需要在电脑上安装以下三个软件:
Ghostscript
32 位
Ghostscript
32 位ImageMagick
32 位tesseract-OCR
32 位三个软件的下载安装没有特殊的地方(tesseract 配置稍复杂但网络有上诸多教程,这里不再赘述),读者可自行搜索下载及配置,下面讲解代码。首先导入需要的模块:
from wand.image import Image from PIL import Image as PI import pyocr import pyocr.builders import io import re import os import shutil
具体的模块用途可以参考下面具体代码。其中 wand
和 pyocr
由于是非标准库需要自行额外安装。打开命令行输入:
pip install wand pip install pyocr
本需求还涉及对接 Excel,可考虑利用 openpyxl
库的 Workbook
用以创建新的 Excel 文件:
from openpyxl import Workbook
需求中的 发票.pdf
放在桌面上。可通过下面基于 os
模块的代码获取桌面路径:
# 获取桌面路径包装成一个函数 def GetDesktopPath(): return os.path.join(os.path.expanduser("~"), 'Desktop') path = GetDesktopPath() + r'\发票.pdf'
获取配置好的 tesseract
ImageMagick
32位🎜🎜tesseract- OCR
32位三个软件的下载安装没有特殊的地方(tesseract稍稍配置复杂但网上有上消防教程,这里不再赘述),读者可自行搜索下载及配置,下面讲解代码。首先需要导入的模块:🎜
tool = pyocr.get_available_tools()[0]
具体的模块用途可以参考下面具体代码。其中 wand
和 pyocr
由于是非标准库需要自行额外安装。打开命令行输入:🎜
image_pdf = Image(filename=path, resolution=300) image_jpeg = image_pdf.convert('jpeg')
本需求还涉及对接Excel,可以考虑利用 openpyxl
库的 Workbook
继而创建新的 Excel 文件:🎜
image_lst = [] for img in image_jpeg.sequence: img_page = Image(image=img) image_lst.append(img_page.make_blob('jpeg'))
发票.pdf
放在桌面上。下面可以通过基于 os
模块的代码获取桌面路径:🎜new_img = PI.open(io.BytesIO(image_lst[0])) new_img.show()
获取配置好的 tesseract
后面调用:🎜
tool = pyocr.get_available_tools()[0]
通过 wand
模块将 PDF 文件转化为分辨率为 300 的 jpeg
图片形式:
image_pdf = Image(filename=path, resolution=300) image_jpeg = image_pdf.convert('jpeg')
将图片解析为二进制矩阵:
image_lst = [] for img in image_jpeg.sequence: img_page = Image(image=img) image_lst.append(img_page.make_blob('jpeg'))
用 io
模块的 BytesIO
方法读取二进制内容为图片形式:
new_img = PI.open(io.BytesIO(image_lst[0])) new_img.show()
接下来分别截取需要提取部位字符串的图片了,尽量让图片中只有需要识别的部分,获取识别出来容易简单处理获得需要的内容。
首先以总金额为例,截取图片用 image.crop((left, top, right, bottom))
四个参数需要反复调试才能确定。经确定四个参数分别是 1600 760 1830 900,尝试截取和预览图片:
### 解析1Z开头码 left = 350 top = 600 right = 1300 bottom = 730 image_obj1 = new_img.crop((left, top, right, bottom)) image_obj1.show()

截取成功后可以交给 OCR 了,代码为 tool.image_to_string()
txt1= tool.image_to_string(image_obj1) print(txt1)

同样,通过方位的调试就可以准确切割到需要的部分进行识别:
left = 560 top = 1260 right = 900 bottom = 1320 image_obj2 = new_img.crop((left, top, right, bottom)) # image_obj2.show() txt2 = tool.image_to_string(image_obj2) # print(txt2)
最后是开票人的识别
left = 1420 top = 1420 right = 1700 bottom = 1500 image_obj3 = new_img.crop((left, top, right, bottom)) # image_obj3.show() txt3 = tool.image_to_string(image_obj3) # print(txt3)

需要确认识别的内容是否正确,如果识别正确率欠佳可以考虑通过图片处理技术消除噪声,也可以去官网下载更高精度的训练包提高识别的正确性
至此,我们成功的识别了总金额、纳税人识别号、开票人三个消息,接下来就通过非常熟悉的 openpyxl
写入Excel,并使用 os
模块实现批量操作即可
workbook = Workbook() sheet = workbook.active header = ['总金额', '纳税人识别号', '开票人'] sheet.append(header) sheet.append([txt1, txt2, txt3]) workbook.save(GetDesktopPath() + r'\汇总.xlsx')

综上,整个需求就成功实现,从效果来看还是非常不错的!完整源码可由文中代码组合而成(已全部分享在文中),感兴趣的读者可以自己尝试!
最后想说的是,其实本文的案例可以衍生出很多实用的办公自动化脚本,例如
批量计算发票金额并重命名文件夹 根据发票类型批量分类 根据发票批量制作报销单 ··· ···
以上是技巧|Python 批量自动提取、整理 PDF 发票的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。
