形成一个三角形所需添加的最小边数
为了确定在图表中形成三角形所需的最少边数,我们分析了中心之间的网络。在三个轮毂专门关联或通过边缘以迂回方式关联的情况下,可以形成三角形。所需的最小边数等于三个集线器之间现有连接中丢失的边数。通过查看图表并区分不相关的中心,我们可以计算形成三角形所需的额外边的数量。这种方法有所不同,因为它需要最少的调整来在图表中的中心之间建立三角关系。
使用的方法
图遍历方法
图遍历方法
用于查找创建三角形所需的最少边数的图遍历方法涉及使用深度优先查找 (DFS) 或广度优先查找 (BFS) 等遍历计算来研究图表。从图表中的每个中心开始,我们导航其相邻的中心并检查相邻中心的任何匹配之间是否存在长度为 2 的路径。如果找到了这样的方法,我们就找到了一个三角形。通过对所有中心重新进行这一准备工作,我们将决定在图表中形成至少一个三角形所需的最少额外边数。这种方法有效地研究了图表结构,以区分三角形并最大限度地减少包含的边数。
算法
制作图表的传染性列表或网格表示。
初始化变量 minMissing 以存储最少数量的丢失边。
迭代图表中的每个中心:
利用深度优先查找 (DFS) 或广度优先查找 (BFS) 从当前中心开始图表遍历。
对于当前枢纽的每个相邻枢纽 j,导航其邻居 k 并检查 j 和 k 之间是否存在边缘。
如果 j 和 k 之间没有边,则通过从 3 中减去现有边的数量来计算创建三角形时丢失的边的数量。
使用当前丢失边缘最少的 minMissing 和 minMissing 来升级 minMissing。
对所有中心进行重复操作后,minMissing 的值将表示创建三角形所需的最少边数。
返回minMissing的尊重。
示例
#include <iostream> #include <vector> #include <queue> int minimumMissingEdges(std::vector<std::vector<int>>& graph) { int minMissing = 3; // Variable to store the least number of lost edges // Iterate over each hub in the graph for (int hub = 0; hub < graph.size(); ++hub) { std::vector<bool> visited(graph.size(), false); // Mark nodes as unvisited int lostEdges = 0; // Number of lost edges to form a triangle // Begin chart traversal from the current hub utilizing Breadth-First Search (BFS) std::queue<int> q; q.push(hub); visited[hub] = true; while (!q.empty()) { int currentHub = q.front(); q.pop(); // Check neighbors of the current hub for (int neighbor : graph[currentHub]) { // Check if there's an edge between the current hub and its neighbor if (!visited[neighbor]) { visited[neighbor] = true; q.push(neighbor); // If there's no edge between the current hub and its neighbor, increment lostEdges if (!graph[currentHub][neighbor]) { lostEdges++; } } } } // Update minMissing with the least of the current lost edges and minMissing minMissing = std::min(minMissing, lostEdges); } return minMissing; } int main() { // Example usage std::vector<std::vector<int>> graph = { {0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 0, 1}, {0, 1, 1, 0} }; int minMissingEdges = minimumMissingEdges(graph); std::cout << "Minimum number of edges to form a triangle: " << minMissingEdges << std::endl; return 0; }
输出
Minimum number of edges to form a triangle: 0
结论
本文的重点是找到在给定图表中创建三角形所需的最少边数。它将图表遍历方法作为一种策略来确定在图表中形成最短三角形所需的最少量额外边。该方法包括使用深度优先查找 (DFS) 或广度优先查找 (BFS) 等遍历算法来导航图表。
从图表中的每个集线器开始,调查相邻的集线器,并检查相邻集线器的任何匹配之间是否存在长度为 2 的路径。如果找到这样的路径,就会形成三角形。通过为所有中心重新散列此句柄,计算确定了形成三角形所需的最少附加边数。本文给出了用于实现图表遍历方法的详细计算和 C 代码示例。理解和应用这种方法可以熟练地保证所需的边缘,从而在不同的图表结构中形成三角形。
以上是形成一个三角形所需添加的最小边数的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。

本文讨论了使用C中的移动语义来通过避免不必要的复制来提高性能。它涵盖了使用std :: Move的实施移动构造函数和任务运算符,并确定了关键方案和陷阱以有效

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡
