在本文中,我们将学习使用 Python 获取股票数据的最佳方法。
yfinance Python 库将用于从雅虎财经检索当前和历史股票市场价格数据。
获取股票市场数据的最佳平台之一是雅虎财经。只需从雅虎财经网站下载数据集并使用 yfinance 库和 Python 编程即可访问它。
您可以在 pip 的帮助下安装 yfinance,您所要做的就是打开命令提示符并键入以下命令显示语法:
pip install yfinance
yfinance 库最好的部分是,它可以免费使用,并且不需要 API 密钥
我们需要找到可用于数据提取的股票代码。我们将展示 以下示例中 GOOGL 的当前市场价格和之前收盘价。
以下程序返回市场价格值、前收盘价值、股票代码 使用 yfinance 模块的值 -
import yfinance as yf ticker = yf.Ticker('GOOGL').info marketPrice = ticker['regularMarketPrice'] previousClosePrice = ticker['regularMarketPreviousClose'] print('Ticker Value: GOOGL') print('Market Price Value:', marketPrice) print('Previous Close Price Value:', previousClosePrice)
执行时,上述程序将生成以下输出 -
Ticker Value: GOOGL Market Price Value: 92.83 Previous Close Price Value: 93.71
通过给出开始日期、结束日期和代码,我们可以获得完整的历史价格数据。
以下程序返回开始日期和结束日期之间的股票价格数据 -
# importing the yfinance package import yfinance as yf # giving the start and end dates startDate = '2015-03-01' endDate = '2017-03-01' # setting the ticker value ticker = 'GOOGL' # downloading the data of the ticker value between # the start and end dates resultData = yf.download(ticker, startDate, endDate) # printing the last 5 rows of the data print(resultData.tail())
执行时,上述程序将生成以下输出 -
[*********************100%***********************] 1 of 1 completed Open High Low Close Adj Close Volume Date 2017-02-22 42.400002 42.689499 42.335499 42.568001 42.568001 24488000 2017-02-23 42.554001 42.631001 42.125000 42.549999 42.549999 27734000 2017-02-24 42.382500 42.417999 42.147999 42.390499 42.390499 26924000 2017-02-27 42.247501 42.533501 42.150501 42.483501 42.483501 20206000 2017-02-28 42.367500 42.441502 42.071999 42.246498 42.246498 27662000
上面的示例将检索2015-03-01到2017-03-01的股票价格数据。
如果您想同时从多个代码中提取数据,请以空格分隔的字符串形式提供代码。
Date 是数据集的索引,而不是上面示例中数据集的列。在对其执行任何数据分析之前,必须将此索引转换为列。下面是如何做到这一点 -
以下程序将列名称添加到开始日期和结束日期之间的股票数据中 -
import yfinance as yf # giving the start and end dates startDate = '2015-03-01' endDate = '2017-03-01' # setting the ticker value ticker = 'GOOGL' # downloading the data of the ticker value between # the start and end dates resultData = yf.download(ticker, startDate, endDate) # Setting date as index resultData["Date"] = resultData.index # Giving column names resultData = resultData[["Date", "Open", "High","Low", "Close", "Adj Close", "Volume"]] # Resetting the index values resultData.reset_index(drop=True, inplace=True) # getting the first 5 rows of the data print(resultData.head())
执行时,上述程序将生成以下输出 -
[*********************100%***********************] 1 of 1 completed Date Open High Low Close Adj Close Volume 0 2015-03-02 28.350000 28.799500 28.157499 28.750999 28.750999 50406000 1 2015-03-03 28.817499 29.042500 28.525000 28.939501 28.939501 50526000 2 2015-03-04 28.848499 29.081499 28.625999 28.916500 28.916500 37964000 3 2015-03-05 28.981001 29.160000 28.911501 29.071501 29.071501 35918000 4 2015-03-06 29.100000 29.139000 28.603001 28.645000 28.645000 37592000
以上转换后的数据与我们从雅虎财经获取的数据是相同的
to_csv()方法可用于将DataFrame对象导出到CSV文件。以下代码将帮助您导出CSV文件中的数据,因为上面转换的数据已经在pandas 数据框。
# importing yfinance module with an alias name import yfinance as yf # giving the start and end dates startDate = '2015-03-01' endDate = '2017-03-01' # setting the ticker value ticker = 'GOOGL' # downloading the data of the ticker value between # the start and end dates resultData = yf.download(ticker, startDate, endDate) # printing the last 5 rows of the data print(resultData.tail()) # exporting/converting the above data to a CSV file resultData.to_csv("outputGOOGL.csv")
执行时,上述程序将生成以下输出 -
[*********************100%***********************] 1 of 1 completed Open High Low Close Adj Close Volume Date 2017-02-22 42.400002 42.689499 42.335499 42.568001 42.568001 24488000 2017-02-23 42.554001 42.631001 42.125000 42.549999 42.549999 27734000 2017-02-24 42.382500 42.417999 42.147999 42.390499 42.390499 26924000 2017-02-27 42.247501 42.533501 42.150501 42.483501 42.483501 20206000 2017-02-28 42.367500 42.441502 42.071999 42.246498 42.246498 27662000
yfinance Python 模块是最容易设置、收集数据和执行数据分析活动的模块之一。使用 Matplotlib、Seaborn 或 Bokeh 等软件包,您可以可视化结果并捕获见解。
您甚至可以使用 PyScript 直接在网页上显示这些可视化效果。
在本文中,我们学习了如何使用Python yfinance模块来获取最佳股票数据。此外,我们还学习了如何获取指定时间段内的所有股票数据,如何通过添加自定义索引和列进行数据分析,以及如何将这些数据转换为 CSV 文件。
以上是使用Python获取股票数据的最佳方法是什么?的详细内容。更多信息请关注PHP中文网其他相关文章!