求和序列 (n^2-1^2) + 2(n^2-2^2) +….n(n^2-n^2)
在本文中,我们将研究计算序列和的不同方法- (n^2 - 1^2) + 2(n^2 - 2^2) + …. n(n^2 - n^2)。在第一种方法中,我们将逐个计算范围为1到n的每个i的序列和,并将其添加到最终和中。
在第二种方法中,我们将推导出一个数学公式来计算给定系列的总和,这将使程序的时间复杂度从O(n)降低到O(1)。
问题陈述 − 我们给定一个数字“n”,我们的任务是计算给定序列的和 (n^2 - 1^2) + 2(n^2 - 2^2) + …. n (n^2 - n^2)。
Example
输入 − 数字 = 5
输出 - 当n = 5时,级数 (n^2 - 1^2) + 2(n^2 - 2^2) + …. n(n^2 - n^2) 的和为150。
输入 − 数字 = 3
输出 - 对于n = 3,级数(n^2 - 1^2)+ 2(n^2 - 2^2)+ ….n(n^2 - n^2)的和为18。
方法一
这是最简单的暴力方法来解决序列求和问题。
经过仔细分析这个数列,我们可以得出结论:对于任意一个数n,我们有
Sum = ∑ i*(n^2 - i^2) for i = 1 to i = n.
因此,对于暴力破解方法,我们可以在循环中使用上述公式,i从1到n,以生成所需的求和。
Example
这种方法的代码如下:
#include <bits/stdc++.h> using namespace std; int main () { int num = 3; long long sum=0; for (int i=1 ; i<num ; i++ ) { sum = sum+i*( num*num - i*i ); } cout<< " The sum of the series (n^2 - 1^2) + 2(n^2 - 2^2) + …. n(n^2 - n^2) for n = " << num << " is " <<sum; return 0; }
输出
The sum of the series (n^2 - 1^2) + 2(n^2 - 2^2) + …. n(n^2 - n^2) for n = 3 is 18
复杂性
时间复杂度 - O(n),因为我们通过循环迭代从1到n的数字。
空间复杂度 - 由于我们没有使用任何外部空间,因此该方法的空间复杂度为O(1)。
方法二
在这种方法中,我们将推导出一个公式,直接得到所需的序列和,因此不需要迭代,这种方法将以常数时间复杂度解决给定的问题。
如前所述,我们得到了系列的一般版本,给定为
Sum = ∑ i*(n^2 - i^2) for i = 1 to i = n.
同一系列可以写成:
Sum = n^2∑ i - ∑ i^3
我们已经知道计算从1到n的所有数字的和以及计算从1到n的所有数字的立方和的公式,分别为:
从1到n的所有数字的总和
n* ( n+1 )/2
其中 n 是给定的数字。
现在,求从1到n的所有数字的立方和
(n*( n+1 )/2)^2
所以给定的系列可以写成-
Sum = n^2 * ( n*( n+1 )/2 ) – ( n*( n+1 )/2 )^2
Sum可以进一步简化为-
Sum = ( n * (n+1)/2 )*( n^2 - ( n * (n+1)/2 )) Sum = n^2 * ( n+1 )/2 * ( n^2 – (n * ( n+1))/2) Sum = n^2 * ( n+1 ) * ( n-1 )/4 Sum = n^2 * ( n^2 -1 )/4 Sum = (n^4)/4 – (n^2)/4
因此,我们只需要计算Sum = (n^4)/4 - (n^2)/4,对于任何n,以得到所需的序列的和。
Example
这种方法的代码如下:
#include <bits/stdc++.h> using namespace std; int main () { int num = 5; long long sum = 0; sum = num*num*(num*num-1)/4; cout<< " The sum of the series (n^2-1^2) + 2(n^2-2^2) + …. n(n^2-n^2) for n = " << num << " is " <<sum; return 0; }
输出
The sum of the series (n^2-1^2) + 2(n^2-2^2) + …. n(n^2-n^2) for n = 5 is 150
复杂性
时间复杂度 - O(1),因为我们只是使用我们推导出的公式计算所需的总和。
空间复杂度 - 由于我们没有使用任何外部空间,因此该方法的空间复杂度为O(1)。
结论 - 在本文中,我们讨论了计算所需系列总和的两种方法,并且在第二种方法中,我们将时间复杂度降低到常数。
以上是求和序列 (n^2-1^2) + 2(n^2-2^2) +….n(n^2-n^2)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡

本文讨论了使用C中的移动语义来通过避免不必要的复制来提高性能。它涵盖了使用std :: Move的实施移动构造函数和任务运算符,并确定了关键方案和陷阱以有效

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。

本文讨论了编程中的自动类型扣除额,详细介绍了其益处,例如降低代码的冗长和提高的可维护性以及其局限性,例如潜在的混乱和调试挑战。
