目录
语法
算法
方法
方法一:朴素方法
示例
输出
Explanation
解释
方法二:使用优先队列
结论
首页 后端开发 C++ C++中的Boruvka算法用于最小生成树

C++中的Boruvka算法用于最小生成树

Aug 27, 2023 pm 02:53 PM
c 最小生成树 boruvka算法

C++中的Boruvka算法用于最小生成树

在图论中,寻找连通加权图的最小生成树(MST)是一个常见的问题。MST是图的边的子集,它连接了所有的顶点并最小化了总边权。解决这个问题的一种高效算法是Boruvka算法。

语法

struct Edge {
   int src, dest, weight;
};

// Define the structure to represent a subset for union-find
struct Subset {
   int parent, rank;
};
登录后复制

算法

现在,让我们概述Boruvka算法中涉及的寻找最小生成树的步骤−

  • 将 MST 初始化为空集。

  • 为每个顶点创建一个子集,其中每个子集只包含一个顶点。

  • 重复以下步骤,直到最小生成树(MST)有V-1条边(V是图中顶点的数量)−

    • 对于每个子集,找到将其连接到另一个子集的最便宜的边。

    • 将选定的边添加到最小生成树中。

    • 对所选边的子集执行并集操作。

  • 输出最小生成树。

方法

在Boruvka算法中,有多种方法可以找到连接每个子集的最便宜的边。以下是两种常见的方法−

方法一:朴素方法

对于每个子集,遍历所有边,并找到将其连接到另一个子集的最小边。

跟踪选定的边并执行联合操作。

示例

#include <iostream>
#include <vector>
#include <algorithm>

struct Edge {
   int src, dest, weight;
};

// Define the structure to represent a subset for union-find
struct Subset {
   int parent, rank;
};

// Function to find the subset of an element using path compression
int find(Subset subsets[], int i) {
   if (subsets[i].parent != i)
      subsets[i].parent = find(subsets, subsets[i].parent);
   return subsets[i].parent;
}

// Function to perform union of two subsets using union by rank
void unionSets(Subset subsets[], int x, int y) {
   int xroot = find(subsets, x);
   int yroot = find(subsets, y);
   if (subsets[xroot].rank < subsets[yroot].rank)
      subsets[xroot].parent = yroot;
   else if (subsets[xroot].rank > subsets[yroot].rank)
      subsets[yroot].parent = xroot;
   else {
      subsets[yroot].parent = xroot;
      subsets[xroot].rank++;
   }
}

// Function to find the minimum spanning tree using Boruvka's algorithm
void boruvkaMST(std::vector<Edge>& edges, int V) {
   std::vector<Edge> selectedEdges; // Stores the edges of the MST

   Subset* subsets = new Subset[V];
   int* cheapest = new int[V];

   // Initialize subsets and cheapest arrays
   for (int v = 0; v < V; v++) {
      subsets[v].parent = v;
      subsets[v].rank = 0;
      cheapest[v] = -1;
   }

   int numTrees = V;
   int MSTWeight = 0;

   // Keep combining components until all components are in one tree
   while (numTrees > 1) {
      for (int i = 0; i < edges.size(); i++) {
         int set1 = find(subsets, edges[i].src);
         int set2 = find(subsets, edges[i].dest);

         if (set1 != set2) {
            if (cheapest[set1] == -1 || edges[cheapest[set1]].weight > edges[i].weight)
               cheapest[set1] = i;
            if (cheapest[set2] == -1 || edges[cheapest[set2]].weight > edges[i].weight)
               cheapest[set2] = i;
         }
      }

      for (int v = 0; v < V; v++) {
         if (cheapest[v] != -1) {
            int set1 = find(subsets, edges[cheapest[v]].src);
            int set2 = find(subsets, edges[cheapest[v]].dest);

            if (set1 != set2) {
               selectedEdges.push_back(edges[cheapest[v]]);
               MSTWeight += edges[cheapest[v]].weight;
               unionSets(subsets, set1, set2);
               numTrees--;
            }

            cheapest[v] = -1;
         }
      }
   }

   // Output the MST weight and edges
   std::cout << "Minimum Spanning Tree Weight: " << MSTWeight << std::endl;
   std::cout << "Selected Edges:" << std::endl;
   for (const auto& edge : selectedEdges) {
      std::cout << edge.src << " -- " << edge.dest << " \tWeight: " << edge.weight << std::endl;
   }

   delete[] subsets;
   delete[] cheapest;
}

int main() {
   // Pre-defined input for testing purposes
   int V = 6;
   int E = 9;
   std::vector<Edge> edges = {
      {0, 1, 4},
      {0, 2, 3},
      {1, 2, 1},
      {1, 3, 2},
      {1, 4, 3},
      {2, 3, 4},
      {3, 4, 2},
      {4, 5, 1},
      {2, 5, 5}
   };

   boruvkaMST(edges, V);

   return 0;
}
登录后复制

输出

Minimum Spanning Tree Weight: 9
Selected Edges:
0 -- 2 	Weight: 3
1 -- 2 	Weight: 1
1 -- 3 	Weight: 2
4 -- 5 	Weight: 1
3 -- 4 	Weight: 2
登录后复制

Explanation

的中文翻译为:

解释

我们首先定义两个结构 - Edge 和 Subset。 Edge 表示图中的一条边,包含边的源、目的地和权重。 Subset表示并查数据结构的子集,包含父级和排名信息。

find函数是一个辅助函数,它使用路径压缩来查找元素的子集。它递归地查找元素所属的子集的代表(父节点),并压缩路径以优化未来的查询。

unionSets函数是另一个辅助函数,使用按秩合并的方式对两个子集进行合并。它找到两个子集的代表,并根据秩进行合并,以保持平衡树。

boruvkaMST 函数采用边向量和顶点数 (V) 作为输入。它实现了 Boruvka 算法来查找 MST。

在 boruvkaMST 函数内,我们创建一个向量 selectedEdges 来存储 MST 的边。

我们创建一个Subset结构的数组来表示子集,并用默认值初始化它们。

我们还创建了一个数组 cheapest 来跟踪每个子集的最便宜的边。

变量 numTrees 被初始化为顶点的数量,MSTWeight 被初始化为 0。

该算法通过重复组合组件来进行,直到所有组件都在一棵树中。主循环运行直到 numTrees 变为 1。

在主循环的每次迭代中,我们迭代所有边并找到每个子集的最小加权边。如果边连接两个不同的子集,我们用最小加权边的索引更新最便宜的数组。

接下来,我们遍历所有的子集,如果一个子集存在最小权重的边,我们将其添加到selectedEdges向量中,更新MSTWeight,执行子集的并集操作,并减少numTrees的值。

最后,我们输出 MST 权重和选定的边。

主要功能提示用户输入顶点数和边数。然后,它获取每条边的输入(源、目标、权重)并使用输入调用 boruvkaMST 函数。

方法二:使用优先队列

创建一个按照权重排序的优先队列来存储边。

对于每个子集,从优先级队列中找到将其连接到另一个子集的最小权重边。

跟踪选定的边并执行联合操作。

示例

#include <iostream>
#include <vector>
#include <queue>
#include <climits>
using namespace std;

// Edge structure representing a weighted edge in the graph
struct Edge {
   int destination;
   int weight;

   Edge(int dest, int w) : destination(dest), weight(w) {}
};

// Function to find the shortest path using Dijkstra's algorithm
vector<int> dijkstra(const vector<vector<Edge>>& graph, int source) {
   int numVertices = graph.size();
   vector<int> dist(numVertices, INT_MAX);
   vector<bool> visited(numVertices, false);

   dist[source] = 0;
   priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
   pq.push(make_pair(0, source));

   while (!pq.empty()) {
      int u = pq.top().second;
      pq.pop();

      if (visited[u]) {
         continue;
      }

      visited[u] = true;

      for (const Edge& edge : graph[u]) {
         int v = edge.destination;
         int weight = edge.weight;

         if (dist[u] + weight < dist[v]) {
            dist[v] = dist[u] + weight;
            pq.push(make_pair(dist[v], v));
         }
      }
   }

   return dist;
}

int main() {
   int numVertices = 4;
   vector<vector<Edge>> graph(numVertices);

   // Adding edges to the graph
   graph[0].push_back(Edge(1, 2));
   graph[0].push_back(Edge(2, 5));
   graph[1].push_back(Edge(2, 1));
   graph[1].push_back(Edge(3, 7));
   graph[2].push_back(Edge(3, 3));

   int source = 0;
   vector<int> shortestDistances = dijkstra(graph, source);

   cout << "Shortest distances from source vertex " << source << ":\n";
   for (int i = 0; i < numVertices; i++) {
      cout << "Vertex " << i << ": " << shortestDistances[i] << endl;
   }

   return 0;
}
登录后复制

输出

Shortest distances from source vertex 0:
Vertex 0: 0
Vertex 1: 2
Vertex 2: 3
Vertex 3: 6
登录后复制

Explanation

的中文翻译为:

解释

在这种方法中,我们使用优先队列来优化查找每个子集的最小加权边的过程。下面是代码的详细解释 −

代码结构和辅助函数(如find和unionSets)与之前的方法保持相同。

boruvkaMST 函数被修改为使用优先级队列来有效地找到每个子集的最小加权边。

而不是使用最便宜的数组,我们现在创建一个边的优先队列(pq)。我们用图的边来初始化它。

主循环运行直到 numTrees 变为 1,与之前的方法类似。

在每次迭代中,我们从优先队列中提取最小权重的边(minEdge)。

然后我们使用find函数找到minEdge的源和目标所属的子集。

如果子集不同,我们将minEdge添加到selectedEdges向量中,更新MSTWeight,执行子集的合并,并减少numTrees。

该过程将继续,直到所有组件都在一棵树中。

最后,我们输出 MST 权重和选定的边。

主要功能与之前的方法相同,我们有预定义的输入用于测试目的。

结论

Boruvka 算法为查找加权图的最小生成树提供了一种有效的解决方案。在用 C++ 实现该算法时,我们的团队深入探索了两种不同的路径:一种是传统的或“朴素”的方法。另一个利用优先级队列。取决于当前给定问题的具体要求。每种方法都有一定的优点,可以相应地实施。通过理解和实现 Boruvka 算法,您可以有效地解决 C++ 项目中的最小生成树问题。

以上是C++中的Boruvka算法用于最小生成树的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

C语言中的常量是什么,可以举一个例子吗? C语言中的常量是什么,可以举一个例子吗? Aug 28, 2023 pm 10:45 PM

常量也称为变量,一旦定义,其值在程序执行期间就不会改变。因此,我们可以将变量声明为引用固定值的常量。它也被称为文字。必须使用Const关键字来定义常量。语法C编程语言中使用的常量语法如下-consttypeVariableName;(or)consttype*VariableName;不同类型的常量在C编程语言中使用的不同类型的常量如下所示:整数常量-例如:1,0,34,4567浮点数常量-例如:0.0,156.89,23.456八进制和十六进制常量-例如:十六进制:0x2a,0xaa..八进制

VSCode和VS C++IntelliSense无法工作或拾取库 VSCode和VS C++IntelliSense无法工作或拾取库 Feb 29, 2024 pm 01:28 PM

VS代码和VisualStudioC++IntelliSense可能无法拾取库,尤其是在处理大型项目时。当我们将鼠标悬停在#Include&lt;wx/wx.h&gt;上时,我们看到了错误消息“CannotOpen源文件‘string.h’”(依赖于“wx/wx.h”),有时,自动完成功能无法响应。在这篇文章中,我们将看到如果VSCode和VSC++IntelliSense不能工作或不能提取库,你可以做些什么。为什么我的智能感知不能在C++中工作?处理大文件时,IntelliSense有时

如何使用C++中的Prim算法 如何使用C++中的Prim算法 Sep 20, 2023 pm 12:31 PM

标题:C++中Prim算法的使用及代码示例引言:Prim算法是一种常用的最小生成树算法,主要用于解决图论中的最小生成树问题。在C++中,通过合理的数据结构和算法实现,可以有效地使用Prim算法。本文将介绍如何在C++中使用Prim算法,并提供具体的代码示例。一、Prim算法简介Prim算法是一种贪心算法,它从一个顶点开始,逐步扩展最小生成树的顶点集合,直到包

修复Xbox错误代码8C230002 修复Xbox错误代码8C230002 Feb 27, 2024 pm 03:55 PM

您是否由于错误代码8C230002而无法在Xbox上购买或观看内容?一些用户在尝试购买或在其控制台上观看内容时不断收到此错误。抱歉,Xbox服务出现问题。稍后再试.有关此问题的帮助,请访问www.xbox.com/errorhelp。状态代码:8C230002这种错误代码通常是由于暂时的服务器或网络问题引起的。但是,还有可能是由于帐户的隐私设置或家长控制等其他原因,这些可能会阻止您购买或观看特定内容。修复Xbox错误代码8C230002如果您尝试在Xbox控制台上观看或购买内容时收到错误代码8C

递归程序在C++中找到数组的最小和最大元素 递归程序在C++中找到数组的最小和最大元素 Aug 31, 2023 pm 07:37 PM

我们以整数数组Arr[]作为输入。目标是使用递归方法在数组中找到最大和最小的元素。由于我们使用递归,我们将遍历整个数组,直到达到长度=1,然后返回A[0],这形成了基本情况。否则,将当前元素与当前最小或最大值进行比较,并通过递归更新其值以供后续元素使用。让我们看看这个的各种输入输出场景−输入 −Arr={12,67,99,76,32};输出 −数组中的最大值:99解释 &mi

中国东方航空宣布C919客机即将投入实际运营 中国东方航空宣布C919客机即将投入实际运营 May 28, 2023 pm 11:43 PM

5月25日消息,中国东方航空在业绩说明会上披露了关于C919客机的最新进展。据公司表示,与中国商飞签署的C919采购协议已于2021年3月正式生效,其中首架C919飞机已在2022年底交付。预计不久之后,该飞机将正式投入实际运营。东方航空将以上海为主要基地进行C919的商业运营,并计划在2022年和2023年引进总共5架C919客机。公司表示,未来的引进计划将根据实际运营情况和航线网络规划来确定。据小编了解,C919是中国具有完全自主知识产权的全球新一代单通道干线客机,符合国际通行的适航标准。该

C++程序打印数字的螺旋图案 C++程序打印数字的螺旋图案 Sep 05, 2023 pm 06:25 PM

以不同格式显示数字是学习基本编码问题之一。不同的编码概念,如条件语句和循环语句。有不同的程序中,我们使用特殊字符(如星号)来打印三角形或正方形。在本文中,我们将以螺旋形式打印数字,就像C++中的正方形一样。我们将行数n作为输入,然后从左上角开始移向右侧,然后向下,然后向左,然后向上,然后再次向右,以此类推等等。螺旋图案与数字123456724252627282982340414243309223948494431102138474645321120373635343312191817161514

C语言中的void关键字的作用 C语言中的void关键字的作用 Feb 19, 2024 pm 11:33 PM

C中的void是一个特殊的关键字,用来表示空类型,也就是指没有具体类型的数据。在C语言中,void通常用于以下三个方面。函数返回类型为void在C语言中,函数可以有不同的返回类型,例如int、float、char等。然而,如果函数不返回任何值,则可以将返回类型设为void。这意味着函数执行完毕后,并不返回具体的数值。例如:voidhelloWorld()

See all articles