目录
算法
语法
max() 函数的语法
方法
示例
输出
结论
首页 后端开发 C++ 找到给定范围内的最大公约数

找到给定范围内的最大公约数

Aug 28, 2023 pm 02:28 PM
范围 最大公约数

找到给定范围内的最大公约数

问题表明我们需要找到给定范围内的 GCD。我们将得到两个正整数 x 和 y 以及两个整数 p 和 q,其范围为 [p,q]。我们需要找出落在 [p,q] 范围内的数字 x 和 y 的 GCD(最大公约数)。 GCD,在数学中被称为最大公约数,是两个给定正整数相除的最大正整数。给定的整数不得为零。对于任意两个正整数 x 和 y,它表示为 gcd(x,y)。

例如,我们有两个正整数 6 和 9。最大公约数 gcd(6,9) 将为 3,因为它是除以这两个数字的最大数。

但是在这个问题中,我们需要找到两个给定的在指定范围内的正整数的最大公约数。让我们通过例子来理解这个问题。我们将得到 4 个数字作为输入 x 和 y 来查找这些数字的 gcd 和两个指示 gcd 范围的数字,即 [p,q]。

输入:x=8、y=12、p=1、q=3

输出:2

解释 - 由于给定的两个数字 x 和 y 的最大公约数是 4。但是 4 不在范围 [1,3] 之内。 [1,3] 范围内的最大公约数是 2,这是我们所需的输出。

输入:x=17、y=15、a=5、b=10

输出:-1

解释 - 数字 17 和 15 的最大公约数是 1。因为 1 不在给定范围 [5,10] 内。当给定范围内没有公约数时,我们需要打印 -1 作为输出。

算法

我们用来解决问题的算法非常简单并且与数学相关。首先,我们将找到数字 x 和 y 的 gcd(最大公约数)。在 C++ 中,有一个名为 gcd() 的内置函数,它返回数字的最大公约数作为输出。

语法

int divisor=gcd(x,y);
登录后复制

我们还可以使用欧几里得算法的有效方法来查找两个数字的 gcd。两者同时工作,时间复杂度为 O(log(min(x,y))。

现在,我们可以使用简单的算术定律得出结论:除以两个数字的 gcd 的数字也将除以这两个数字本身。因此,在 for 循环中从 i=1 迭代到 sqrt(gcd(x,y)) 将帮助我们获得该数字的所有公约数。

然后,检查每个 i 直到 sqrt(gcd(x,y)) i 是否整除 gcd(x,y)。如果 i 除以 gcd(x,y),那么我们可以说 gcd(x,y)/i 也将是 gcd 的除数,从而得出结论,它也是数字 x 和 y 的公约数。

让我们通过一个例子来理解这个概念。假设 x 和 y 分别为 32 和 48。gcd(18,27) 为 16。所以在这种情况下,我们将从 i=1 迭代到 i<=4,即 sqrt(16)。让我们考虑 i=2。这里我除以 gcd(18,27),即 16/2,等于 8。因此 gcd(x,y)/i 也会除 gcd(x,y) 得到 i。<=4,即 sqrt(16)。让我们考虑 i=2。这里我除以 gcd(18,27),即 16/2,等于 8。因此 gcd(x,y)/i 也会除 gcd(x,y) 得到 i。

注意 - 如果数字 n 除以任意数字 x 得到 y,可以表示为 $frac{n}{x}:=:y$ 那么 y 将将 n 除以 x $(x:times:y:=:n)$。

该算法可能是解决该问题的最有效方法。在遵循这个算法的同时,我们将不断检查公约数是否在 [a,b] 范围内。如果不正确,我们将使用 max() 函数不断更新变量中的除数,以获得范围内的最大公约数。

max() 函数的语法

int m = max(a,b);
登录后复制

它返回 a 和 b 的最大值。

方法

以下是我们将遵循的方法 -

  • 初始化一个函数来计算给定范围内的最大公约数。

  • 计算两个给定正数 x 和 y 的 gcd。

  • 初始化变量名称 ans = -1。

  • 在 for 循环中从 i=1 迭代到 i<=sqrt(gcd(x,y)) 并不断检查 i 是否整除 gcd(x,y)。<=sqrt(gcd(x,y)) 并不断检查 i 是否整除 gcd(x,y)。

  • 如果 (gcd(x,y)%i)=0,检查 i 是否在 [a,b] 范围内,以及是否使用 max() 函数将其存储在 ans 中,以便我们得到最大公约数位于该范围内。

  • 同时检查 gcd/i 是否在范围内,如果在范围内,则再次使用 max() 函数更新 ans 的值。

  • 完成 for 循环中的所有迭代后返回 ans。

示例

该方法在 C++ 中的实现 -

#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;

// to calculate gcd of two numbers using Euclidean algorithm
int gcd(int a, int b){
   if(a == 0)
   return b;
   return gcd(b % a, a);
}

//function to calculate greatest common divisor in the given range [a,b]
int build(int x, int y, int a, int b) {

   //using C++ inbuilt library to calculate gcd of given numbers
   int z = gcd(x, y); //we can use euclidean algorithm too as an alternative
   int ans = -1; //storing -1 for the case when no common divisor lies in the range
   for(int i = 1; i<=sqrt(z); i++) { //iterating until sqrt(z) because either of two factors
      //of a number must be less than square root of the number
      if(z % i == 0) {
         if(i >= a && i <= b) //checking it i lies in the range
         ans = max(ans, i); //storing maximum value
         if((z / i) >= a && (z / i) <= b)
         ans = max(ans, z / i);
      }
   }
   return ans;
}
int main() {
   int x, y, a, b;
   x=24, y=42, a=3, b=9;
   cout << build(x, y, a, b) <<" is the gcd that lies in range ["<<a<<","<<b<<"]"<<endl;
   return 0;
}
登录后复制

输出

6 is the gcd that lies in range [3,9]
登录后复制

时间复杂度:O(log(min(x,y)) + sqrt(z)),其中 z 是两个数字 x 和 y 的最大公约数。

空间复杂度:O(1),因为没有使用额外的空间。

结论

我们讨论了求解 [a,b] 范围内两个数的 gcd 问题的方法。这就是我们如何在 C++ 中使用各种不同的函数来解决上述问题。

我希望您觉得这篇文章很有帮助,并澄清您与该问题有关的所有概念。

以上是找到给定范围内的最大公约数的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

c语言函数返回值的类型有哪些?返回值是由什么决定的? c语言函数返回值的类型有哪些?返回值是由什么决定的? Mar 03, 2025 pm 05:52 PM

本文详细介绍了C函数返回类型,包括基本(int,float,char等),派生(数组,指针,结构)和void类型。 编译器通过函数声明和返回语句确定返回类型,执行

Gulc:从头开始建造的C库 Gulc:从头开始建造的C库 Mar 03, 2025 pm 05:46 PM

Gulc是一个高性能的C库,优先考虑最小开销,积极的内衬和编译器优化。 其设计非常适合高频交易和嵌入式系统等关键应用程序,其设计强调简单性,模型

c语言函数的定义和调用规则是什么 c语言函数的定义和调用规则是什么 Mar 03, 2025 pm 05:53 PM

本文解释了C函数声明与定义,参数传递(按值和指针),返回值以及常见的陷阱,例如内存泄漏和类型不匹配。 它强调了声明对模块化和省份的重要性

c语言函数格式字母大小写转换步骤 c语言函数格式字母大小写转换步骤 Mar 03, 2025 pm 05:53 PM

本文详细介绍了字符串案例转换的C功能。 它可以通过ctype.h的toupper()和tolower()解释,并通过字符串迭代并处理零终端。 常见的陷阱,例如忘记ctype.h和修改字符串文字是

c语言函数返回值在内存保存在哪里? c语言函数返回值在内存保存在哪里? Mar 03, 2025 pm 05:51 PM

本文研究C函数返回值存储。 较小的返回值通常存储在寄存器中以备速度;较大的值可能会使用指针来记忆(堆栈或堆),影响寿命并需要手动内存管理。直接ACC

distinct用法和短语分享 distinct用法和短语分享 Mar 03, 2025 pm 05:51 PM

本文分析了形容词“独特”的多方面用途,探索其语法功能,常见的短语(例如,“不同于”,“完全不同”),以及在正式与非正式中的细微应用

如何有效地使用STL(排序,查找,转换等)的算法? 如何有效地使用STL(排序,查找,转换等)的算法? Mar 12, 2025 pm 04:52 PM

本文详细介绍了c中有效的STL算法用法。 它强调了数据结构选择(向量与列表),算法复杂性分析(例如,std :: sort vs. std vs. std :: partial_sort),迭代器用法和并行执行。 常见的陷阱

C标准模板库(STL)如何工作? C标准模板库(STL)如何工作? Mar 12, 2025 pm 04:50 PM

本文解释了C标准模板库(STL),重点关注其核心组件:容器,迭代器,算法和函子。 它详细介绍了这些如何交互以启用通用编程,提高代码效率和可读性t

See all articles