使用Python Matplotlib绘制等高线图
Matplotlib 是 Python 中的免费开源绘图库。它用于通过使用 python 脚本创建二维图形和绘图。要使用 matplotlib 功能,我们需要首先安装该库。
使用 pip 安装
通过在命令提示符中执行以下命令,我们可以轻松地从 PyPi 安装 Matplotlib 的最新稳定包。
pip install Matplotlib
您可以使用以下命令通过conda安装Matplotlib -
conda install -c conda-forge matplotlib
等高线图用于通过绘制常量 z 切片(称为等高线)来可视化二维表面中的三维数据。
它是在轮廓函数 (Z) 的帮助下绘制的,该函数是两个输入 X 和 Y(X 轴和 Y 轴坐标)的函数。
Z = fun(x,y)
Matplotlib 提供了两个函数 plt.contour 和 plt.contourf 来绘制等高线图。
contour() 方法
matplotlib.pyplot。轮廓()方法用于绘制轮廓线。它返回 QuadContourSet。以下是该函数的语法 -
contour([X, Y,] Z, [levels], **kwargs)
参数
[X,Y]:可选参数,表示Z中值的坐标。
Z:绘制轮廓的高度值。
levels:用于确定轮廓线/区域的数量和位置。
示例
让我们举个例子,使用 numpy 三角函数绘制等高线。
import numpy as np import matplotlib.pyplot as plt def f(x, y): return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) xlist = np.linspace(-4.0, 4.0, 800) ylist = np.linspace(-4.0, 4.0, 800) # A mesh is created with the given co-ordinates by this numpy function X, Y = np.meshgrid(xlist, ylist) Z = f(X,Y) fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) cp = ax.contour(X, Y, Z) fig.colorbar(cp) # Add a colorbar to a plot ax.set_title('Contour Plot') ax.set_xlabel('x (cm)') ax.set_ylabel('y (cm)') plt.show()
输出
f(x,y) 函数是使用 numpy 三角函数定义的。
示例
我们再举一个例子,画等高线。
import numpy as np import matplotlib.pyplot as plt def f(x, y): return np.sqrt(X**2 + Y**2) xlist = np.linspace(-10, 10, 400) ylist = np.linspace(-10, 10, 400) # create a mesh X, Y = np.meshgrid(xlist, ylist) Z = f(X, Y) fig = plt.figure(figsize=(6,5)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) cp = ax.contour(X, Y, Z) ax.set_title('Contour Plot') ax.set_xlabel('x (cm)') ax.set_ylabel('y (cm)') plt.show()
输出
z 函数是 x 和 y 坐标值的平方根之和。使用 numpy.sqrt() 函数实现。
contourf() 函数
matplotlib.pyplot提供了一个方法contourf()来绘制填充轮廓。以下是该函数的语法 -
contourf([X, Y,] Z, [levels], **kwargs)
哪里,
[X,Y]:可选参数,表示Z中值的坐标。
Z:绘制轮廓的高度值。
levels:用于确定轮廓线/区域的数量和位置。
示例
让我们再举一个例子,使用contourf()方法绘制等高线图。
import numpy as np import matplotlib.pyplot as plt xlist = np.linspace(-8, 8, 800) ylist = np.linspace(-8, 8, 800) X, Y = np.meshgrid(xlist, ylist) Z = np.sqrt(X**2 + Y**2) fig = plt.figure(figsize=(6,5)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) cp = ax.contourf(X, Y, Z) fig.colorbar(cp) # Add a colorbar to a plot ax.set_title('Filled Contours Plot') #ax.set_xlabel('x (cm)') ax.set_ylabel('y (cm)') plt.show()
输出
使用fig.colorbar()方法,我们将颜色添加到绘图中。 z 函数是 x 和 y 坐标值的平方根之和。
示例
在此示例中,我们将使用 matplotlib.plt.contourf() 方法绘制极坐标等高线图。
import numpy as np import matplotlib.pyplot as plt a = np.radians(np.linspace(0, 360, 20)) b = np.arange(0, 70, 10) Y, X = np.meshgrid(b, a) values = np.random.random((a.size, b.size)) fig, ax = plt.subplots(subplot_kw=dict(projection='polar')) ax.set_title('Filled Contours Plot') ax.contourf(X, Y, values) plt.show()
输出
在上述所有示例中,我们都使用 numpy.meshgrid() 函数来生成 X 和 Y 坐标的数组。
以上是使用Python Matplotlib绘制等高线图的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti
