目录
BigDL-LLM:英特尔® 平台上的开源大语言模型加速库
安装和使用:简便的安装过程和易用的 API 接口
示例:快速实现一个基于大语言模型的语音助手应用
△图 1. 语音助手工作流程示意
作者简介
首页 科技周边 人工智能 用BigDL-LLM 即刻加速百亿级参数LLM推理

用BigDL-LLM 即刻加速百亿级参数LLM推理

Sep 05, 2023 pm 01:49 PM
人工智能 数据

我们正迈入一个由大语言模型(Large Language Model, LLM)驱动的 AI 新时代,LLM在诸如客户服务、虚拟助理、内容创作、编程辅助等各类应用中正发挥着越来越重要的作用。

然而,随着 LLM 规模不断扩大,运行大模型所需的资源消耗也越来越大,导致其运行也越来越慢,这给 AI 应用开发者带来了相当大的挑战。

为此,英特尔最近推出了一个名为BigDL-LLM[1]的大模型开源库,可助力 AI 开发者和研究者在英特尔® 平台上加速优化大语言模型,提升大语言模型在英特尔® 平台上的使用体验。

用BigDL-LLM 即刻加速百亿级参数LLM推理

下面就展示了使用 BigDL-LLM 加速过的 330 亿参数的大语言模型 Vicuna-33b-v1.3[2]在一台搭载英特尔® 至强® 铂金 8468 处理器的服务器上运行的实时效果。

用BigDL-LLM 即刻加速百亿级参数LLM推理

△在一台搭载英特尔® 至强® 铂金 8468 处理器的服务器上运行 330 亿参数大语言模型的实际速度(实时录屏)

BigDL-LLM:英特尔® 平台上的开源大语言模型加速库

BigDL-LLM 是一个专注于优化和加速大型语言模型的开源库,它是 BigDL 的一部分,并遵循 Apache 2.0 许可证发布

它提供了各种低精度优化(例如 INT4/INT5/INT8),并可利用多种英特尔® CPU集成的硬件加速技术(AVX/VNNI/AMX 等)和最新的软件优化,来赋能大语言模型在英特尔® 平台上实现更高效的优化和更为快速的运行。

BigDL-LLM 的一大重要特性是:对基于 Hugging Face Transformers API 的模型,只需改动一行代码即可对模型进行加速,理论上可以支持运行任何 Transformers 模型,这对熟悉 Transformers API 的开发者非常友好。

除了 Transformers API,很多人也会使用 LangChain 来开发大语言模型应用。

为此,BigDL-LLM 也提供便于使用的 LangChain 的集成[3],从而让开发者能够轻松使用 BigDL-LLM 来开发新应用或迁移现有的、基于 Transformers API 或 LangChain API 的应用。

此外,对于一般的 PyTorch 大语言模型(没有使用 Transformer 或 LangChain API 的模型),也可使用 BigDL-LLM optimize_model API 一键加速来提升性能。详情请参阅 GitHub README[4]以及官方文档[5]

BigDL-LLM 还提供了大量常用开源 LLM的加速样例(e.g. 使用 Transformers API 的样例[6]和使用 LangChain API 的样例[7],以及教程(包括配套 jupyter notebooks)[8] ,方便开发者快速上手尝试。

安装和使用:简便的安装过程和易用的 API 接口

安装 BigDL-LLM 非常方便,只需执行以下命令即可:

pip install --pre --upgrade bigdl-llm[all]
登录后复制

若代码显示不全,请左右滑动

使用 BigDL-LLM对大模型进行加速也是非常容易的(这里仅用 Transformers 风格 API 进行举例)。

使用 BigDL-LLM Transformer 风格 API 对模型加速,只需要改动模型加载部分,后续使用过程与原生 Transformers 完全一致。

而用 BigDL-LLM API 加载模型的方式与 Transformers API 也几乎一致——用户只需要更改 import,在 from_pretrained 参数中设置 load_in_4bit=True 即可。

BigDL-LLM将在模型加载过程中进行4位低精度量化,并在后续的推理过程中利用各种软硬件加速技术进行优化

#Load Hugging Face Transformers model with INT4 optimizationsfrom bigdl.llm. transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
登录后复制

若代码显示不全,请左右滑动

示例:快速实现一个基于大语言模型的语音助手应用

下文将以 LLM 常见应用场景“语音助手”为例,展示采用 BigDL-LLM 快速实现 LLM 应用的案例。通常情况下,语音助手应用的工作流程分为以下两个部分:

用BigDL-LLM 即刻加速百亿级参数LLM推理

△图 1. 语音助手工作流程示意
  1. 语音识别——使用语音识别模型(本示例采用了 Whisper 模型[9] )将用户的语音转换为文本;
  2. 文本生成——将 1 中输出的文本作为提示语 (prompt),使用一个大语言模型(本示例采用了 Llama2[10] )生成回复。

以下是本文使用 BigDL-LLM 和 LangChain[11] 来搭建语音助手应用的过程:

语音识别阶段:第一步,加载预处理器 processor 和语音识别模型 recog_model。本示例中使用的识别模型 Whisper 是一个 Transformers 模型。

只需使用 BigDL-LLM 中的 AutoModelForSpeechSeq2Seq 并设置参数 load_in_4bit=True,就能够以 INT4 精度加载并加速这一模型,从而显著缩短模型推理用时。

#processor = WhisperProcessor .from_pretrained(recog_model_path)recog_model = AutoModelForSpeechSeq2Seq .from_pretrained(recog_model_path, load_in_4bit=True)
登录后复制

若代码显示不全,请左右滑动

第二步,进行语音识别。首先使用处理器从输入语音中提取输入特征,然后使用识别模型预测 token,并再次使用处理器将 token 解码为自然语言文本。

input_features = processor(frame_data,sampling_rate=audio.sample_rate,return_tensor=“pt”).input_featurespredicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
登录后复制

若代码显示不全,请左右滑动

文本生成阶段,首先使用 BigDL-LLM 的 TransformersLLM API 创建一个 LangChain 语言模型(TransformersLLM 是在 BigDL-LLM 中定义的语言链 LLM 集成)。

可以使用这个 API 来加载 Hugging Face Transformers 的任何模型

llm = TransformersLLM . from_model_id(model_id=llm_model_path,model_kwargs={"temperature": 0, "max_length": args.max_length, "trust_remote_code": True},)
登录后复制

若代码显示不全,请左右滑动

然后,创建一个正常的对话链 LLMChain,并将已经创建的 llm 设置为输入参数。

# The following code is complete the same as the use-casevoiceassistant_chain = LLMChain(llm=llm, prompt=prompt,verbose=True,memory=ConversationBufferWindowMemory(k=2),)
登录后复制

若代码显示不全,请左右滑动

以下代码将使用一个链条来记录所有对话历史,并将其适当地格式化为大型语言模型的输入。这样,我们可以生成合适的回复。只需将识别模型生成的文本作为 "human_input" 输入即可。代码如下:

response_text = voiceassistant_chain .predict(human_input=text, stop=”\n\n”)
登录后复制

若代码显示不全,请左右滑动

最后,将语音识别和文本生成步骤放入循环中,即可在多轮对话中与该“语音助手”交谈。您可访问底部 [12] 链接,查看完整的示例代码,并使用自己的电脑进行尝试。快用 BigDL-LLM 来快速搭建自己的语音助手吧!

作者简介

黄晟盛是英特尔公司的资深架构师,黄凯是英特尔公司的AI框架工程师,戴金权是英特尔院士、大数据技术全球CTO和BigDL项目的创始人,他们都从事着与大数据和AI相关的工作

以上是用BigDL-LLM 即刻加速百亿级参数LLM推理的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

70B模型秒出1000token,代码重写超越GPT-4o,来自OpenAI投资的代码神器Cursor团队 70B模型秒出1000token,代码重写超越GPT-4o,来自OpenAI投资的代码神器Cursor团队 Jun 13, 2024 pm 03:47 PM

70B模型,秒出1000token,换算成字符接近4000!研究人员将Llama3进行了微调并引入加速算法,和原生版本相比,速度足足快出了快了13倍!不仅是快,在代码重写任务上的表现甚至超越了GPT-4o。这项成果,来自爆火的AI编程神器Cursor背后团队anysphere,OpenAI也参与过投资。要知道在以快着称的推理加速框架Groq上,70BLlama3的推理速度也不过每秒300多token。 Cursor这样的速度,可以说是实现了近乎即时的完整代码文件编辑。有人直呼好家伙,如果把Curs

See all articles