在二维平面上,从原点到达点(d, 0)所需的跳跃次数
在本文中,我们将讨论一个令人兴奋的分析问题的可能解决方案,即在指定了固定跳跃长度的 2D 平面中,从原点到达点 (d, 0) 需要多少次跳跃。我们将使用固定的跳跃长度和目标坐标来找到所需的最小跳跃次数。
输入输出场景
假设跳跃长度可以是a或b,目标点是(d,0)。然后,给定的输出是到达目标所需的最小跳跃次数。
Input: a = 7, b = 5, d = 9 Output: 2 Input: a = 7, b = 5, d = 5 Output: 1 Input: a = 7, b = 5, d = 24 Output: 4
假设您站在 2D 平面的原点 (0, 0)。您的目标坐标为 (d, 0)。到达目标坐标的唯一方法是进行固定长度的跳跃。您的目标是找到一种有效的方法,以最少的跳跃次数达到目标。
使用 If 语句
我们将使用 if 语句来查找到达 (d, 0) 所需的最少跳转次数。
首先,我们需要保证a总是大于b,这样a代表更长的跳跃长度,而b b>表示较短的跳跃长度。因此,如果b > a,,那么我们将a和b中的最大值分配给a。
接下来,我们检查d是否大于或等于a。如果满足这个条件,那么我们可以简单地用(d + a - 1) / a计算出最小跳跃次数。这里,(d + a - 1) 表示跳跃长度为“a”的总距离除以a (即每次跳跃长度)给出跳跃次数。
如果d = 0,则不需要跳转。
如果 d = b,那么我们跳一跳b长度就可以直接到达该点。
如果 d > b 且 d < a< a,则最小跳跃次数为 2。这是因为如果我们取一个三角形 XYZ,使得 X 为原点,Z 是目标点,Y 是满足 XY = YZ = max(a, b) 的点。 那么,最小跳跃将为 2,即从 X 到Y 和Y 到Z。
示例
#include <iostream> using namespace std; int minJumps(int a, int b, int d) { // Check if b > a, then interchange the values of a and b if (b > a) { int cont = a; a = b; b = cont; } // When d >= a if (d >= a) return (d + a - 1) / a; // When the target point is 0 if (d == 0) return 0; // When d is equal to b. if (d == b) return 1; // When distance to be covered is not equal to b. return 2; } int main() { int a = 3, b = 5, d = 9; int result = minJumps(a, b, d); cout << "Minimum number of jumps required to reach (d, 0) from (0, 0) is: " << result << endl; return 0; }
输出
Minimum number of jumps required to reach (d, 0) from (0, 0) is: 2
使用除法和模运算符
如果a或b的值为0,那么我们可以简单地使用除法和取模运算符来找到最小数量跳跃。这里,我们将距离 d 除以跳跃长度(因为其中一个跳跃长度为 0)来得到跳跃次数。
示例
#include <iostream> using namespace std; int minJumps(int d, int jumpLength) { // To find number of complete jumps int numJumps = d / jumpLength; // If distance is not divisible by jump length if (d % jumpLength != 0) { numJumps++; } return numJumps; } int main() { int d = 24, jumpLength = 4; int result = minJumps(d, jumpLength); cout << "Minimum number of jumps required to reach (d, 0) from (0, 0) is: " << result << endl; return 0; }
输出
Minimum number of jumps required to reach (d, 0) from (0, 0) is: 6
注意 - 我们还可以使用三元运算符来以简洁的方式编写代码。
int minJumps(int d, int jumpLength) { int numJumps = (d % jumpLength == 0) ? (d / jumpLength) : (d / jumpLength) + 1; return numJumps; }
结论
我们讨论了如何找到从 2D 平面中的原点到达目标点 (d, 0) 所需的最小跳跃次数。我们使用 if 语句来查找 a 和 b 非零值的跳转次数(a 和 b b>是跳跃长度)。如果a或b为零,那么我们可以使用除法和模运算符。为了简洁地编写代码,我们可以使用三元运算符。
以上是在二维平面上,从原点到达点(d, 0)所需的跳跃次数的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

本文讨论了使用C中的移动语义来通过避免不必要的复制来提高性能。它涵盖了使用std :: Move的实施移动构造函数和任务运算符,并确定了关键方案和陷阱以有效

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。
