目录
算法
方法
Example
示例
输出
结论
首页 后端开发 C++ 中心十二边形数

中心十二边形数

Sep 07, 2023 pm 12:09 PM
- 中心 - 十二边形 - 数字

描绘十二边形的图形数字称为十二边形数。中心十二边形数由中心的一个点和连续十二边形(即 12 边多边形)层中围绕该点的其他点表示。

中心十二边形数可以通过下图更好地解释。

中心十二边形数

对于n=1,中心只有一个点。因此输出为1。

中心十二边形数

对于n=2,中心有一个点,周围是一个十二边形。因此,总共的点数将是13。所以下一个中心十二边形数将是13。

中心十二边形数

对于n=3,中心将有一个单独的点,紧随其后的是一个围绕它的十二边形,然后是下一个连续的十二边形层,其中包含24个点。因此,总点数将为37,这将是下一个中心十二边形数。

类似地,对于每个正数 n,都会遵循这一点。参照此,前几个十二边形数字将是 1, 13, 37, 73, 121, 181…..

在这个问题中,我们将会给定任意正数 n,并需要打印第 n 个中心十二边形数。

例如,

输入 - 2

输出 - 13

输入 - 5

输出 - 121

下面是解决这个问题的算法。

算法

要计算第n个中心十二边形数,我们需要弄清楚问题中所遵循的模式。

根据中心十二边形数的概念,它由中心的点表示,然后是连续的十二边形层。连续的十二边形层为12、24、36、48……如果我们仔细观察模式,它形成了一个公差为12的等差数列。

由于中心十二边形数的前几个序列是 1, 13, 37, 73…。它只不过是十二边形层和中心的一个点的总和。

如果我们考虑以0开始的连续十二边形层序列,我们就能更好地理解它。

0, 12, 24, 36, 48.
For n=1, the centred dodecagonal number is 1 which is 0+1.
For n=2, the centred dodecagonal number is 13 which is 0+12+1.
For n=3, the centred dodecagonal number is 37 which is 0+12+24+1.
登录后复制

从这里我们可以认为,第n个中心十二边形数只不过是从0开始的n项的A.P.之和,公差是12和1。

所以第n个中心十二边形数的公式可以表示为,

$$mathrm{CDn=等差数列(a=0:和:d=12):的:前n:项和:+1}$$

$$mathrm{CD_n:=:frac{n}{2}(2a:+:(n-1)d):+1}$$

在这里,$mathrm{CD_n}$ 是第n个中心十二边形数

a是等差数列的第一个项,即0

d是等差数列的公差,为12

进一步,该公式可以写成:

$$mathrm{CD_n:=:frac{12n}{2}(n-1):+:1}$$

$$mathrm{CD_n:=:6n(n-1):+:1}$$

保留原文不翻译

我们将使用上述公式来计算我们方法中的第 n 个中心十二边形数。

方法

  • 为了解决这个问题,我们只需创建一个函数来计算第n个中心十二边形数。

  • 我们将使用上面的推导公式来计算任意 n 个正数的第 n 个中心十二边形数。

  • 返回计算值,这将是我们想要的输出。

Example

的中文翻译为:

示例

下面是上述方法在 C++ 中的实现 -

#include <iostream>
#include<bits/stdc++.h>

using namespace std;

//function to calculate the nth centred dodecagonal number
int CDn(int N){
   int ans= 6 * N * (N-1) + 1; //used to store nth centred dodecagonal number value
   
   return ans; //return the answer
}
int main(){
   int N=8;
   cout<<CDn(N)<<endl;
   
   N=6;
   cout<<CDn(N)<<endl;
   
   N=12;
   cout<<CDn(N)<<endl;
   
   return 0;
}
登录后复制

输出

337
181
793
登录后复制

时间复杂度:O(1),因为需要恒定时间。

空间复杂度:O(1),因为我们不占用任何额外的空间。

结论

在本文中,我们解决了打印第n个居中十二边形数的问题。我们学习了居中十二边形数的概念,并推导出了第n个数的公式,

我希望您发现本文有助于理解和澄清有关该问题的所有概念。

以上是中心十二边形数的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

C语言数据结构:树和图的数据表示与操作 C语言数据结构:树和图的数据表示与操作 Apr 04, 2025 am 11:18 AM

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

C标准模板库(STL)如何工作? C标准模板库(STL)如何工作? Mar 12, 2025 pm 04:50 PM

本文解释了C标准模板库(STL),重点关注其核心组件:容器,迭代器,算法和函子。 它详细介绍了这些如何交互以启用通用编程,提高代码效率和可读性t

如何有效地使用STL(排序,查找,转换等)的算法? 如何有效地使用STL(排序,查找,转换等)的算法? Mar 12, 2025 pm 04:52 PM

本文详细介绍了c中有效的STL算法用法。 它强调了数据结构选择(向量与列表),算法复杂性分析(例如,std :: sort vs. std vs. std :: partial_sort),迭代器用法和并行执行。 常见的陷阱

我如何在C中有效处理异常? 我如何在C中有效处理异常? Mar 12, 2025 pm 04:56 PM

本文详细介绍了C中的有效异常处理,涵盖了尝试,捕捉和投掷机制。 它强调了诸如RAII之类的最佳实践,避免了不必要的捕获块,并为强大的代码登录例外。 该文章还解决了Perf

在C中如何有效地使用RVALUE参考? 在C中如何有效地使用RVALUE参考? Mar 18, 2025 pm 03:29 PM

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)

C语言文件操作难题的幕后真相 C语言文件操作难题的幕后真相 Apr 04, 2025 am 11:24 AM

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

如何在C 20中使用范围进行更有表现的数据操纵? 如何在C 20中使用范围进行更有表现的数据操纵? Mar 17, 2025 pm 12:58 PM

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

动态调度如何在C中起作用,如何影响性能? 动态调度如何在C中起作用,如何影响性能? Mar 17, 2025 pm 01:08 PM

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡

See all articles