找到每个给定的N个区间右侧最接近的非重叠区间的索引
一个标准的区间表示通常包括一组成对排列的起始点和结束点。找到每个指定区间右侧最近的不重叠区间构成了我们目前的困境。这个任务在许多不同的应用中具有巨大的重要性,比如资源分配和调度,因为它涉及识别不与当前区间相交或包含的下一个区间。
语法
为了帮助理解即将展示的代码演示,让我们首先查看将要使用的语法,然后再深入算法。
// Define the Interval structure struct Interval { int start; int end; }; // Function to find the index of closest non-overlapping interval vector<int> findClosestNonOverlappingInterval(const vector<interval>& intervals) { // Implementation goes here } </interval></int>
算法
解决这个问题需要一个有组织的方法,以逆序迭代区间为中心,同时维护一个指向它们最近的非重叠伙伴的索引堆栈。以下是我们提出的算法如何解决这个问题的简要但有效的步骤 -
创建一个空栈来存储非重叠区间的索引。
使用与间隔数相等的大小初始化一个索引向量,并用-1填充以表示尚未找到非重叠的间隔。
从右到左遍历间隔。
如果堆栈非空,并且当前间隔和顶部间隔之间存在横截面积,则继续从所述堆栈中消除(弹出)该最顶部索引。
李>为了确保准确表示,如果堆栈为空,则将索引位置在表示当前区间的向量中分配为-1。这表示右侧不存在非重叠区间。
强烈建议在尝试此任务之前确保我们指定的堆栈具有元素;否则会出现错误。在确认我们在所述结构上有一个或多个元素后,我们可以通过让当前间隔的向量将其索引值设置为与我们识别的结构上最顶部位置的对应元素相同以及将其相应的索引信息包含到同一结构上来进行操作.
重复步骤 3-7,直到所有间隔都被处理完毕。
返回索引向量。
方法
为了解决这一困境,我们将研究两种不同的策略。
方法 1:暴力破解
解决这个问题的一个可能的策略是使用暴力。本质上,这需要检查每个单独的间隔,然后将其与位于其右侧的所有间隔进行比较,直到没有交叉点的选项变得明显。然而。值得注意的是,利用此方法会产生 O(N^2) 的时间复杂度。其中N表示参与检查程序的区间总数。
语法
vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; }
Example
的中文翻译为:示例
#include#include using namespace std; // Define the Interval structure struct Interval { int start; int end; }; vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; } int main() { // Define intervals vector intervals = {{1, 3}, {2, 4}, {5, 7}, {6, 9}, {8, 10}}; // Find the index of closest non-overlapping interval for each interval vector closestIndices = findClosestNonOverlappingInterval(intervals); // Print the results for (int i = 0; i < intervals.size(); i++) { cout << "Interval [" << intervals[i].start << ", " << intervals[i].end << "] "; if (closestIndices[i] != -1) { cout << "has closest non-overlapping interval at index " << closestIndices[i] << endl; } else { cout << "has no non-overlapping interval to the right" << endl; } } return 0; }
输出
Interval [1, 3] has closest non-overlapping interval at index 2 Interval [2, 4] has closest non-overlapping interval at index 2 Interval [5, 7] has closest non-overlapping interval at index 4 Interval [6, 9] has no non-overlapping interval to the right Interval [8, 10] has no non-overlapping interval to the right
方法二:最优解决方案
一种非常成功的方法涉及利用堆栈作为监视最近的非重叠间隔的手段。该策略的时间复杂度为 O(N),因为我们的任务只需要我们仔细阅读一次间隔。
语法
vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); stack<int> st; for (int i = intervals.size() - 1; i >= 0; i--) { while (!st.empty() && intervals[i].end >= intervals[st.top()].start) { st.pop(); } if (!st.empty()) { result[i] = st.top(); } st.push(i); } return result; }
Example
的中文翻译为:示例
#include#include using namespace std; // Define the Interval structure struct Interval { int start; int end; }; vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; } int main() { // Define intervals vector intervals = {{1, 3}, {2, 4}, {5, 7}, {6, 9}, {8, 10}}; // Find the index of closest non-overlapping interval for each interval vector closestIndices = findClosestNonOverlappingInterval(intervals); // Print the results for (int i = 0; i < intervals.size(); i++) { cout << "Interval [" << intervals[i].start << ", " << intervals[i].end << "] "; if (closestIndices[i] != -1) { cout << "has closest non-overlapping interval at index " << closestIndices[i] << endl; } else { cout << "has no non-overlapping interval to the right" << endl; } } return 0; }
输出
Interval [1, 3] has closest non-overlapping interval at index 2 Interval [2, 4] has closest non-overlapping interval at index 2 Interval [5, 7] has closest non-overlapping interval at index 4 Interval [6, 9] has no non-overlapping interval to the right Interval [8, 10] has no non-overlapping interval to the right
结论
我们的探索目标是在C++中找到每个给定区间右侧最接近的非重叠区间索引的最佳位置。首先,我们深入讨论了语法复杂性,同时提出了一个算法并提出了两种潜在解决方案。作为我们调查的一部分,我们展示了我们的蛮力方法和基于栈的优化方法如何通过成功测试的可执行代码来实现。这种方法使您能够轻松地识别任何特定集合的最接近的非重叠区间。
以上是找到每个给定的N个区间右侧最接近的非重叠区间的索引的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。

C35 的计算本质上是组合数学,代表从 5 个元素中选择 3 个的组合数,其计算公式为 C53 = 5! / (3! * 2!),可通过循环避免直接计算阶乘以提高效率和避免溢出。另外,理解组合的本质和掌握高效的计算方法对于解决概率统计、密码学、算法设计等领域的许多问题至关重要。

C语言函数名定义包括:返回值类型、函数名、参数列表和函数体。函数名应清晰、简洁、统一风格,避免与关键字冲突。函数名具有作用域,可在声明后使用。函数指针允许将函数作为参数传递或赋值。常见错误包括命名冲突、参数类型不匹配和未声明的函数。性能优化重点在函数设计和实现上,而清晰、易读的代码至关重要。

C语言函数是可重复利用的代码块,它接收输入,执行操作,返回结果,可将代码模块化提高可复用性,降低复杂度。函数内部机制包含参数传递、函数执行、返回值,整个过程涉及优化如函数内联。编写好的函数遵循单一职责原则、参数数量少、命名规范、错误处理。指针与函数结合能实现更强大的功能,如修改外部变量值。函数指针将函数作为参数传递或存储地址,用于实现动态调用函数。理解函数特性和技巧是编写高效、可维护、易理解的C语言程序的关键。

算法是解决问题的指令集,其执行速度和内存占用各不相同。编程中,许多算法都基于数据搜索和排序。本文将介绍几种数据检索和排序算法。线性搜索假设有一个数组[20,500,10,5,100,1,50],需要查找数字50。线性搜索算法会逐个检查数组中的每个元素,直到找到目标值或遍历完整个数组。算法流程图如下:线性搜索的伪代码如下:检查每个元素:如果找到目标值:返回true返回falseC语言实现:#include#includeintmain(void){i

C语言多线程编程指南:创建线程:使用pthread_create()函数,指定线程ID、属性和线程函数。线程同步:通过互斥锁、信号量和条件变量防止数据竞争。实战案例:使用多线程计算斐波那契数,将任务分配给多个线程并同步结果。疑难解答:解决程序崩溃、线程停止响应和性能瓶颈等问题。
