首页 科技周边 人工智能 微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能

Sep 09, 2023 pm 10:37 PM
理论 微软亚洲研究院 知识蒸馏

重新表达:研究动机


掩码建模(MIM, MAE)被证明是非常有效的自监督训练方法。然而,如图 1 所示,MIM 对于更大的模型效果相对更好。当模型很小的时候(比如 ViT-T 5M 参数,这样的模型对于现实世界非常重要),MIM 甚至可能一定程度上降低模型的效果。比如用 MAE 训练的 ViT-L 比普通监督训练的模型在 ImageNet 上的分类效果提升 3.3%,但是用 MAE 训练的 ViT-T 比普通监督训练的模型在 ImageNet 上的分类效果降低了 0.6%。

在这篇工作中我们提出了 TinyMIM,其在保持 ViT 结构不变并且不修改结构引入其他归纳偏置(inductive bias)的基础上、用蒸馏的方法迁移大模型上的知识到小模型。

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



  • 论文地址:https://arxiv.org/pdf/2301.01296.pdf
  • 代码地址:https://github.com/OliverRensu/TinyMIM

我们系统性的研究了蒸馏目标、数据增强、正则化、辅助损失函数等对于蒸馏的影响。在严格的只用 ImageNet-1K 作为训练数据的情况下(包括 Teacher model 也只用 ImageNet-1K 训练)和 ViT-B 作为模型,我们的方法实现了当前最好的性能。如图所示:

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



把我们的方法(TinyMIM)和基于掩码重建的方法 MAE,以及监督式学习的方法从头开始训练的 DeiT 作比较。MAE 在模型比较大的时候有显著的性能提升,但是在模型比较小的时候提升幅度有限甚至会伤害模型的最终效果。我们的方法 TinyMIM 在不同模型的大小上都有大幅提升。

我们的贡献如下:

1. 蒸馏的目标(Distillation targets):1)蒸馏 token 之间的关系比单独蒸馏 class token 或者特征图(feature map)更有效;2)用中间层作为蒸馏的目标更有效。
2. 数据增强和模型正则化(Data and network regularization):1)用带掩码的图片效果更差;2)学生模型需要一点 drop path,但是 teacher 模型不需要。
3. 辅助损失函数(auxiliary losses):MIM 作为辅助损失函数没有意义。
4. 宏观蒸馏策略(Macro distillation strategy):我们发现序列化的蒸馏(ViT-B -> ViT-S -> ViT-T)效果最好。

二、方法

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



我们系统性的调研了蒸馏的目标,输入的图片,蒸馏目标模块。

2.1 影响蒸馏效果的因素

1)特征:

a. 中间 block 特征和输出特征

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



当 i=L 时,指的是 Transformer 输出层的特征。当 i

b. 注意力(Attention)特征和前馈层(FFN)层特征

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



Transformer 每一个 block 有 Attention 层和 FFN 层,蒸馏不同的层会带来不同的影响。

c.QKV 特征

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



在 Attention 层内会有 Q,K,V 特征,这些特征用于计算注意力机制,我们也调研了直接蒸馏这些特征。

2)关系

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



Q,K,V 用于计算注意力图,这些特征之间的关系也可以作为知识蒸馏的目标。

3)输入:是否带掩码

传统的知识蒸馏是直接输入完整的图片。我们的方法为了探索蒸馏掩码建模模型,所以我们也探索了带掩码的图片是否适合作为知识蒸馏时候的输入。

2.2 知识蒸馏方法对比

1)Class Token 蒸馏:

最简单的方法就是类似 DeiT 直接蒸馏 MAE 预训练模型的 class token:

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



其中微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能指学生模型的 class token,而 微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能指老师模型的 class token。

2)特征蒸馏:我们直接参考了 feature distillation [1] 作为对比

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能


3)关系蒸馏:我们提出了也是本文默认的蒸馏策略

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



三、实验

3.1 主要实验结果

我们的方法在 ImageNet-1K 上预训练,而且教师模型也是在 ImageNet-1K 预训练。然后我们将我们预训练的模型在下游任务(分类、语义分割)上进行了微调。模型表现如图:

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



我们的方法显着超过之前基于 MAE 的方法,尤其是小模型。具体来讲,对于超小的模型 ViT-T,我们的方法实现了 75.8% 的分类准确性,相比 MAE 基线模型实现了 4.2 的提升。对于小模型 ViT-S,我们实现了 83.0% 的分类准确性,比之前最好的方法提升了 1.4。对于 Base 尺寸的模型,我们的方法分别超过 MAE 基线模型和以前最好的模型 CAE 4.1 和 2.0。

同时我们也测试了模型的鲁棒性,如图所示:

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



TinyMIM-B 对比MAE-B,在ImageNet-A 和ImageNet- R 分别提升了+ 6.4 和+4.6。

3.2 消融实验

1)蒸馏不同关系

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



同时蒸馏QK,VV 关系而且在计算关系的时候有Softmax 实现了最好的效果。

2)不同的蒸馏策略

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



TinyMIM 这种蒸馏关系的方法实现了比MAE 基线模型,class token 蒸馏,特征图蒸馏都更好的效果,在各种尺寸的模型上都是如此。

3)蒸馏中间层

微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能



我们发现蒸馏第十八层实现了最好的效果。

四、结论

在本文中,我们提出了 TinyMIM,它是第一个成功地使小模型受益于掩码重建建模(MIM)预训练的模型。我们没有采用掩码重建作为任务,而是通过以知识蒸馏的方式训练小模型模拟大模型的关系来预训练小模型。 TinyMIM 的成功可以归功于对可能影响 TinyMIM 预训练的各种因素的全面研究,包括蒸馏目标、蒸馏输入和中间层。通过大量的实验,我们得出结论,关系蒸馏优于特征蒸馏和类标记蒸馏等。凭借其简单性和强大的性能,我们希望我们的方法能够为未来的研究提供坚实的基础。

[1] Wei, Y., Hu, H., Xie, Z., Zhang, Z., Cao, Y., Bao, J., ... & Guo, B. (2022) . Contrastive learning rivals masked image modeling in fine-tuning via feature distillation. arXiv preprint arXiv:2205.14141.

以上是微软亚洲研究院推出TinyMIM:通过知识蒸馏提升小型ViT的性能的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

PRO | 为什么基于 MoE 的大模型更值得关注? PRO | 为什么基于 MoE 的大模型更值得关注? Aug 07, 2024 pm 07:08 PM

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊 准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊 Aug 06, 2024 pm 07:34 PM

编辑|KX逆合成是药物发现和有机合成中的一项关键任务,AI越来越多地用于加快这一过程。现有AI方法性能不尽人意,多样性有限。在实践中,化学反应通常会引起局部分子变化,反应物和产物之间存在很大重叠。受此启发,浙江大学侯廷军团队提出将单步逆合成预测重新定义为分子串编辑任务,迭代细化目标分子串以生成前体化合物。并提出了基于编辑的逆合成模型EditRetro,该模型可以实现高质量和多样化的预测。大量实验表明,模型在标准基准数据集USPTO-50 K上取得了出色的性能,top-1准确率达到60.8%。

See all articles