在这个问题中,我们需要找到最多包含A个0和B1的最长子集。我们需要做的就是使用数组元素找到所有可能的子集,并找到包含最多 A 0 和 B1 的最长子集。
在本教程中,首先,我们将学习递归方法来解决问题。之后,我们将使用动态规划的方法来优化代码。
问题陈述 - 我们给出了一个包含 N 个二进制字符串的数组。此外,我们还给出了 A 和 B 整数。我们需要使用给定的二进制字符串创建最长的子集,使其不包含超过 A 0 和 B1。
Input – arr = {"101", "0", "101", "0", "1"}, A = 2, B = 1
Output – 3
最长的子集是{ "0", "0", "1"},包含2个0和1个1。
Input – arr = {"0", "101", "0", "1"}, A = 3, B = 3
Output – 3
最长的子集是{"0", "101", "0", "1"},3个0和3个1。
在本节中,我们将学习一种使用递归的简单方法。我们将使用数组元素构造所有可能的子集,并找到包含 A 0 和 B 1 的最长子集。
步骤 1 - 定义 countZeros() 函数来计算给定二进制字符串中零的总数。
步骤 1.1 - 将“count”变量初始化为零。
步骤 1.2 - 使用 for 循环遍历字符串。
步骤 1.3 - 如果第 i 个索引处的字符为“0”,则将“cnt”的值增加 1。
步骤 1.2 - 返回“cnt”变量的值。
步骤 2 - getMaxSubsetLen() 返回整数值并采用向量 arr、int A、int B 和索引作为参数。
步骤 3 - 定义函数内的基本情况。如果索引等于向量的大小,或者 A 和 B 的值均为零,则返回 0。
第 4 步 - 现在,计算索引处字符串中零的总数。
第 5 步 - 从字符串长度中减去 1 的总数,即可得出 1 的总数。
第 6 步 - 将“第一个”变量初始化为 0。
步骤 7 - 如果 0 和 1 的总数分别小于 A 和 B,则包含当前的二进制字符串。存储 1 + 函数递归调用的返回值。在进行递归调用时,从 A 和 B 中减去 0 和 1。
第 8 步 - 排除当前字符串并将结果值存储在“第二个”变量中。
第 9 步 - 返回第一个和第二个的最大值。
#include <bits/stdc++.h> using namespace std; // function to count the number of 0's in a string int countZeros(string s){ // initialize count variable to 0 int count = 0; // traverse the string for (int i = 0; i < s.size(); i++){ // if the current character is 0, the increment count if (s[i] == '0'){ count++; } } // return count return count; } // recursive function to find the maximum length of a subset of strings according to the given condition. int getMaxSubsetLen(vector<string> arr, int A, int B, int index){ // base case // if all the strings are traversed, or A + B becomes 0 if (index == arr.size() || A + B == 0){ return 0; } // total number of 0's in arr[index] string int zero = countZeros(arr[index]); // total number of 1's in arr[index] string int one = arr[index].size() - zero; // Stores the length of the subset, if arr[i] is included. int first = 0; // if the number of 0's and 1's in arr[index] is less than or equal to A and B, respectively, then include the string if (zero <= A && one <= B){ first = 1 + getMaxSubsetLen(arr, A - zero, B - one, index + 1); } // Stores the length of the subset, if arr[i] is not included. int second = getMaxSubsetLen(arr, A, B, index + 1); // return the maximum of the first and second return max(first, second); } // Driver Code int main(){ vector<string> arr = {"101", "0", "101", "0", "1"}; int A = 2, B = 1; cout << "The maximum length of the subset consisting at most A 0s and B 1s is - " <<getMaxSubsetLen(arr, A, B, 0); return 0; }
The maximum length of the subset consisting at most A 0s and B 1s is - 3
时间复杂度 - O(2N),因为我们使用 N 个数组元素找到所有可能的子集。
空间复杂度 - O(1)
我们在本节中对上述方法进行了优化。我们使用动态规划的方法来解决这个问题。它存储前一个状态的结果,以降低问题的时间复杂度。
第 1 步 - 定义 countZeros() 函数来计算特定二进制字符串中零的总数,就像我们在上述方法中所做的那样。
步骤 2 - 创建一个大小为 A x B x N 的 3 维向量来存储先前状态的结果。在列表中,当总 0 等于 A 且 1 等于 B 时,我们将在索引“I”处存储子集的长度。此外,将其作为 getMaxSubsetLen() 函数的参数传递。
< /里>第 3 步 - 按照我们在上述方法中所做的那样定义基本情况。
步骤 4 - 如果 dpTable[A][B][index] 的值大于 0,则表示状态已计算并返回其值。
第 5 步 - 计算当前字符串中 0 和 1 的总数。
第 6 步 - 获取包含和排除当前字符串后的结果值。
第 7 步 - 使用 max() 函数获取第一个和第二个的最大值,并将其存储在 dpTable[A][B][index] 中后返回
#include <bits/stdc++.h> using namespace std; // function to count the number of 0's in a string int countZeros(string s){ // initialize count variable to 0 int count = 0; // traverse the string for (int i = 0; i < s.size(); i++){ // if the current character is 0, the increment count if (s[i] == '0'){ count++; } } // return count return count; } // recursive function to find the maximum length of a subset of strings according to the given condition. int getMaxSubsetLen(vector<string> array, int A, int B, int index, vector<vector<vector<int>>> &dpTable){ // base case if (index == array.size() || A + B == 0){ return 0; } // return if already calculated if (dpTable[A][B][index] > 0){ return dpTable[A][B][index]; } // total number of 0's in the current string int zero = countZeros(array[index]); // total number of 1's in the current string int one = array[index].size() - zero; // to store the length of the subset can be formed by including the current string int first = 0; // if the total number of 0's and 1's in the current string is less than or equal to A and B, respectively if (zero <= A && one <= B){ first = 1 + getMaxSubsetLen(array, A - zero, B - one, index + 1, dpTable); } // to store the length of the subset can be formed by excluding the current string int second = getMaxSubsetLen(array, A, B, index + 1, dpTable); // store the maximum of the first and second, and return return dpTable[A][B][index] = max(first, second); } int main(){ vector<string> arr = {"101", "0", "101", "0", "1"}; int A = 2, B = 1; vector<vector<vector<int>>> dpTable(A + 1, vector<vector<int>>(B + 1, vector<int>(arr.size() + 1, 0))); cout << "The maximum length of the subset consisting at most A 0s and B 1s is - " << getMaxSubsetLen(arr, A, B, 0, dpTable); return 0; }
The maximum length of the subset consisting at most A 0s and B 1s is - 3
时间复杂度 - O(A*B*N),因为我们需要填充 3D 列表才能获得结果。
空间复杂度 - O(A*B*N),因为我们使用 3D 列表进行动态规划方法。
以上是从一个字符串数组中找出由A个0和B个1组成的最长子集的长度的详细内容。更多信息请关注PHP中文网其他相关文章!